Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955576

RESUMO

The tumor microenvironment of colon carcinoma, the site at which tumor cells and the host immune system interact, is influenced by signals from tumor cells, immunocompetent cells, and bacterial components, including LPS. A large amount of LPS is available in the colon, and this could promote inflammation and metastasis by enhancing tumor cell adhesion to the endothelium. Polydatin (PD), the 3-ß-D-glucoside of trans-resveratrol, is a polyphenol with anti-cancer, anti-inflammatory, and immunoregulatory effects. This study was designed to explore whether PD is able to produce antiproliferative effects on three colon cancer lines, to reduce the expression of adhesion molecules that are upregulated by LPS on endothelial cells, and to decrease the proinflammatory cytokines released in culture supernatants. Actually, we investigated the effects of PD on tumor growth in a coculture model with human mononuclear cells (MNCs) that mimics, at least in part, an in vitro tumor microenvironment. The results showed that PD alone or in combination with MNC exerts antiproliferative and proapoptotic effects on cancer cells, inhibits the production of the immunosuppressive cytokine IL-10 and of the proinflammatory cytokines upregulated by LPS, and reduces E-selectin and VCAM-1 on endothelial cells. These data provide preclinical support to the hypothesis that PD could be of potential benefit as a therapeutic adjuvant in colon cancer treatment and prevention.


Assuntos
Neoplasias do Colo , Microambiente Tumoral , Neoplasias do Colo/patologia , Citocinas/metabolismo , Células Endoteliais/metabolismo , Glucosídeos/uso terapêutico , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Estilbenos
2.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639014

RESUMO

The current state of cancer treatment is still far from being satisfactory considering the strong impairment of patients' quality of life and the high lethality of malignant diseases. Therefore, it is critical for innovative approaches to be tested in the near future. In view of the crucial role that is played by tumor immunity, the present review provides essential information on the immune-mediated effects potentially generated by the interplay between ionizing radiation and cytotoxic antitumor agents when interacting with target malignant cells. Therefore, the radiation-dependent abscopal effect (i.e., a biological effect of ionizing radiation that occurs outside the irradiated field), the influence of cancer chemotherapy on the antigenic pattern of target neoplastic cells, and the immunogenic cell death (ICD) caused by anticancer agents are the main topics of this presentation. It is widely accepted that tumor immunity plays a fundamental role in generating an abscopal effect and that anticancer drugs can profoundly influence not only the host immune responses, but also the immunogenic pattern of malignant cells. Remarkably, several anticancer drugs impact both the abscopal effect and ICD. In addition, certain classes of anticancer agents are able to amplify already expressed tumor-associated antigens (TAA). More importantly, other drugs, especially triazenes, induce the appearance of new tumor neoantigens (TNA), a phenomenon that we termed drug-induced xenogenization (DIX). The adoption of the abscopal effect is proposed as a potential therapeutic modality when properly applied concomitantly with drug-induced increase in tumor cell immunogenicity and ICD. Although little to no preclinical or clinical studies are presently available on this subject, we discuss this issue in terms of potential mechanisms and therapeutic benefits. Upcoming investigations are aimed at evaluating how chemical anticancer drugs, radiation, and immunotherapies are interacting and cooperate in evoking the abscopal effect, tumor xenogenization and ICD, paving the way for new and possibly successful approaches in cancer therapy.


Assuntos
Antineoplásicos/efeitos adversos , Imunidade/efeitos dos fármacos , Imunidade/efeitos da radiação , Neoplasias/complicações , Neoplasias/imunologia , Radiação Ionizante , Radioterapia/efeitos adversos , Animais , Antineoplásicos/uso terapêutico , Biomarcadores , Gerenciamento Clínico , Suscetibilidade a Doenças , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Humanos , Modelos Animais , Neoplasias/terapia , Lesões por Radiação/etiologia , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Radioterapia/métodos
3.
Mediators Inflamm ; 2019: 1515621, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804705

RESUMO

OBJECTIVE: Obesity is considered a clinic condition characterized by a state of chronic low-grade inflammation. The role of macrophages and adipocytokines in adipose tissue inflammation is in growing investigation. The physiopathological mechanisms involved in inflammatory state in obesity are not fully understood though the adipocytokines seem to characterize the biochemical link between obesity and inflammation. The aim of this work is to analyze the effect of theobromine, a methylxanthine present in the cocoa, on adipogenesis and on proinflammatory cytokines evaluated in a model of fat tissue inflammation in vitro. METHODS: In order to mimic in vitro this inflammatory condition, we investigated the interactions between human-like macrophages U937 and human adipocyte cell lines SGBS. The effect of theobromine on in vitro cell growth, cell cycle, adipogenesis, and cytokines release in the supernatants has been evaluated. RESULTS: Theobromine significantly inhibits the differentiation of preadipocytes in mature adipocytes and reduces the levels of proinflammatory cytokines as MCP-1 and IL-1ß in the supernatants obtained by the mature adipocytes and macrophages interaction. CONCLUSION: Theobromine reduces adipogenesis and proinflammatory cytokines; these data suggest its potential therapeutic effect for treating obesity by control of macrophages infiltration in adipose tissue and inflammation.


Assuntos
Adipogenia/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Obesidade/tratamento farmacológico , Obesidade/imunologia , Teobromina/uso terapêutico , Adipócitos/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
4.
Pharmacol Res ; 131: 1-6, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29530602

RESUMO

In recent years, immune checkpoint inhibitors (ICpI) have provided the ground to bring tumor immunity back to life thanks to their capacity to afford a real clinical benefit in terms of patient's survival. Essential to ICpI success is the presence of tumor-associated neoantigens generated by non-synonymous mutations, since a direct relationship between mutation load of malignant cells and susceptibility to ICpI has been confidently established. However, it has been also suggested that high intratumor heterogeneity (ITH) associated with subclonal neoantigens could not elicit adequate immune responses. Several years ago we discovered that in vivo treatment of leukemic mice with triazene compounds (TZC) produces a marked increase of leukemia cell immunogenicity [a phenomenon termed Drug-Induced Xenogenization (DIX)] through point mutations able to generate strong tumor neoantigens (Drug-Induced Neoantigens, DIN). Immunogenic mutations are produced by TZC-dependent methylation of O6-guanine of DNA, that is suppressed by the DNA repair protein methyl-guaninemethyltransferase (MGMT). This minireview illustrates preclinical investigations conducted in animal models where DIN-positive murine leukemia cells were inoculated intracerebrally into histocompatible mice. The analysis of the literature indicates that the growth of xenogenized malignant cells is controlled by anti-DIN graft responses and by intra-cerebral or intravenous adoptive transfer of anti-DIN cytotoxic T lymphocytes. This survey reminds also that PARP inhibitors increase substantially the antitumor activity of TZC and can be administered with the intent of suppressing more efficiently tumor load and possibly reducing ITH through downsizing the polyclonality of xenogenized tumor cell population. Finally, the present report illustrates a hypothetical clinical protocol that could be considered as an example of future development of DIXbased tumor immuno-chemotherapy in brain malignancies. The protocol involves oral or intravenous administration of TZC along with loco-regional (i.e. intracerebral "wafer") treatment with agents able to increase tumor cell sensitivity to the cytotoxic and xenogenizing effects of TZC (i.e. MGMT and PARP inhibitors) without enhancing the systemic toxicity of these DNA methylating compounds.


Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Triazenos/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Metilação de DNA/efeitos dos fármacos , Humanos , Imunidade/efeitos dos fármacos , Leucemia/genética , Leucemia/imunologia , Leucemia/patologia , Leucemia/terapia , Mutação/efeitos dos fármacos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/transplante , Triazenos/imunologia
5.
Chemotherapy ; 63(2): 64-75, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29533947

RESUMO

Since the introduction of highly active antiretroviral therapy more than 2 decades ago, HIV-related deaths have dramatically decreased and HIV infection has become a chronic disease. Due to the inability of antiretroviral drugs to eradicate the virus, treatment of HIV infection requires a systemic lifelong therapy. However, even when successfully treated, HIV patients still show increased incidence of age-associated co-morbidities compared with uninfected individuals. Virus- induced immunosenescence, a process characterized by a progressive decline of immune system function, contributes to the premature ageing observed in HIV patients. Although antiretroviral therapy has significantly improved both the quality and length of patient lives, the life expectancy of treated patients is still shorter compared with that of uninfected individuals. In particular, while antiretroviral therapy can contrast some features of HIV-associated immunosenescence, several anti-HIV agents may themselves contribute to other aspects of immune ageing. Moreover, older HIV patients tend to have a worse immunological response to the antiviral therapy. In this review we will examine the available evidence on the role of antiretroviral therapy in the control of the main features regulating immunosenescence.

6.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2843-2851, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28780124

RESUMO

BACKGROUND: trans-Resveratrol (tRES) is a polyphenolic stilbene found in plant products which has attracted great attention because of its antioxidant, anti-inflammatory and anticancer properties. METHODS: The possible correlation between tRES-induced suppression of melanoma cell growth and its influence on telomerase expression has been investigated by biological assays. Moreover, in order to gain new knowledge about possible mechanisms of action of tRES as antineoplastic agent, its interaction with biologically relevant secondary structure-forming DNA sequences, its aggregation properties and copper-binding activity have been studied by CD, UV and fluorescence spectroscopies. RESULTS: Biological assays have confirmed that growth inhibitory properties of tRES well correlate with the reduction of telomerase activity and hTERT gene transcript levels in human melanoma cells. Biophysical studies in solution have proved that tRES binds all the studied DNA model systems with low affinity, however showing high ability to discriminate G-quadruplex vs. duplex DNA. In addition, tRES has shown no propensity to form aggregates in the explored concentration range and has been found able to bind Cu2+ ions with a 2:1 stoichiometry. CONCLUSIONS: From these biological and biophysical analyses it has emerged that tRES produces cytotoxic effects on human melanoma cells and, at a molecular level, is able to bind Cu2+ and cancer-involved G-quadruplexes, suggesting that multiple mechanisms of action could be involved in its antineoplastic activity. GENERAL SIGNIFICANCE: Expanding the knowledge on the putative mechanisms of action of tRES as antitumour agent can help to develop novel, effective tRES-based anticancer drugs.


Assuntos
Antineoplásicos/administração & dosagem , Melanoma/tratamento farmacológico , Estilbenos/administração & dosagem , Telomerase/química , Antineoplásicos/química , Fenômenos Biofísicos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dicroísmo Circular , Cobre/química , Quadruplex G/efeitos dos fármacos , Humanos , Melanoma/genética , Melanoma/patologia , Conformação de Ácido Nucleico , Resveratrol , Espectrometria de Fluorescência , Análise Espectral , Estilbenos/química , Telomerase/genética
7.
J Transl Med ; 10: 252, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23259744

RESUMO

BACKGROUND: Most DNA-damaging chemotherapeutic agents activate the transcription factor nuclear factor κB (NF-κB). However, NF-κB activation can either protect from or contribute to the growth suppressive effects of the agent. We previously showed that the DNA-methylating drug temozolomide (TMZ) activates AKT, a positive modulator of NF-κB, in a mismatch repair (MMR) system-dependent manner. Here we investigated whether NF-κB is activated by TMZ and whether AKT is involved in this molecular event. We also evaluated the functional consequence of inhibiting NF-κB on tumor cell response to TMZ. METHODS: AKT phosphorylation, NF-κB transcriptional activity, IκB-α degradation, NF-κB2/p52 generation, and RelA and NF-κB2/p52 nuclear translocation were investigated in TMZ-treated MMR-deficient (HCT116, 293TLα-) and/or MMR-proficient (HCT116/3-6, 293TLα+, M10) cells. AKT involvement in TMZ-induced activation of NF-κB was addressed in HCT116/3-6 and M10 cells transiently transfected with AKT1-targeting siRNA or using the isogenic MMR-proficient cell lines pUSE2 and KD12, expressing wild type or kinase-dead mutant AKT1. The effects of inhibiting NF-κB on sensitivity to TMZ were investigated in HCT116/3-6 and M10 cells using the NF-κB inhibitor NEMO-binding domain (NBD) peptide or an anti-RelA siRNA. RESULTS: TMZ enhanced NF-κB transcriptional activity, activated AKT, induced IκB-α degradation and RelA nuclear translocation in HCT116/3-6 and M10 but not in HCT116 cells. In M10 cells, TMZ promoted NF-κB2/p52 generation and nuclear translocation and enhanced the secretion of IL-8 and MCP-1. TMZ induced RelA nuclear translocation also in 293TLα+ but not in 293TLα- cells. AKT1 silencing inhibited TMZ-induced IκB-α degradation and NF-κB2/p52 generation. Up-regulation of NF-κB transcriptional activity and nuclear translocation of RelA and NF-κB2/p52 in response to TMZ were impaired in KD12 cells. RelA silencing in HCT116/3-6 and M10 cells increased TMZ-induced growth suppression. In M10 cells NBD peptide reduced basal NF-κB activity, abrogated TMZ-induced up-regulation of NF-κB activity and increased sensitivity to TMZ. In HCT116/3-6 cells, the combined treatment with NBD peptide and TMZ produced additive growth inhibitory effects. CONCLUSION: NF-κB is activated in response to TMZ in a MMR- and AKT-dependent manner and confers protection against drug-induced cell growth inhibition. Our findings suggest that a clinical benefit could be obtained by combining TMZ with NF-κB inhibitors.


Assuntos
Citoproteção/efeitos dos fármacos , Dacarbazina/análogos & derivados , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Dacarbazina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células HEK293 , Humanos , Proteínas I-kappa B/metabolismo , Células MCF-7 , Inibidor de NF-kappaB alfa , NF-kappa B/genética , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Interferência de RNA/efeitos dos fármacos , Temozolomida , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/efeitos dos fármacos
8.
Clin Dev Immunol ; 2011: 790460, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21603161

RESUMO

Group I CD1 (CD1a, CD1b, and CD1c) glycoproteins expressed on immature and mature dendritic cells present nonpeptide antigens (i.e., lipid or glycolipid molecules mainly of microbial origin) to T cells. Cytotoxic CD1-restricted T lymphocytes recognizing mycobacterial lipid antigens were found in tuberculosis patients. However, thanks to a complex interplay between mycobacteria and CD1 system, M. tuberculosis possesses a successful tactic based, at least in part, on CD1 downregulation to evade CD1-dependent immunity. On the ground of these findings, it is reasonable to hypothesize that modulation of CD1 protein expression by chemical, biological, or infectious agents could influence host's immune reactivity against M. tuberculosis-associated lipids, possibly affecting antitubercular resistance. This scenario prompted us to perform a detailed analysis of the literature concerning the effect of external agents on Group I CD1 expression in order to obtain valuable information on the possible strategies to be adopted for driving properly CD1-dependent immune functions in human pathology and in particular, in human tuberculosis.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Bactérias/imunologia , Antígenos CD1/imunologia , Regulação da Expressão Gênica , Linfócitos T/imunologia , Animais , Antígenos CD1/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Fatores Imunológicos/farmacologia , Mycobacterium/imunologia , Tuberculose/imunologia
9.
Biochim Biophys Acta ; 1792(6): 497-505, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19268705

RESUMO

In the last years small RNA molecules, i.e. microRNA (miRNA) encoded by miR genes, have been found to play a crucial role in regulating gene expression of a considerable part of plant's and animal's genome. Here, we report the essential information on biogenesis of miRNAs and recent evidence on their important role in human diseases. Emphasis has been given to miR-155, since this molecule represents a typical multifunctional miRNA. Recent data indicate that miR-155 has distinct expression profiles and plays a crucial role in various physiological and pathological processes such as haematopoietic lineage differentiation, immunity, inflammation, cancer, and cardiovascular diseases. Moreover, miR-155 has been found to be implicated in viral infections, particularly in those caused by DNA viruses. The available experimental evidence indicating that miR-155 is over expressed in a variety of malignant tumors allows us to include this miRNA in the list of genes of paramount importance in cancer diagnosis and prognosis. Exogenous molecular control in vivo of miR-155 expression could open up new ways to restrain malignant growth and viral infections, or to attenuate the progression of cardiovascular diseases.


Assuntos
MicroRNAs/genética , Animais , Sequência de Bases , Doenças Cardiovasculares/genética , Hematopoese/genética , Humanos , Inflamação/genética , MicroRNAs/fisiologia , Neoplasias/genética
10.
Pharmacol Res ; 61(5): 437-48, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20026273

RESUMO

PHA-848125 is a novel cyclin-dependent kinase inhibitor under Phase I/II clinical investigation. In this study, we describe, for the first time, the effect of PHA-848125 on human melanoma cells in vitro. Seven melanoma cell lines with different sensitivity to temozolomide (TMZ) were exposed to PHA-848125 for 5 days and then assayed for cell growth. In all cases, including TMZ-resistant cells, PHA-848125 IC(50) values were significantly below the maximum plasma concentrations achievable in the clinic. In the most PHA-848125-sensitive cell line, the drug caused a concentration-dependent G(1) arrest. PHA-848125 also impaired phosphorylation of the retinoblastoma protein at CDK2 and CDK4 specific sites, decreased retinoblastoma protein and cyclin A levels, and increased p21(Cip1), p27(Kip1) and p53 expression. Combined treatment with fixed ratios of TMZ plus PHA-848125 was studied in three melanoma cell lines. PHA-848125 was added to the cells 48 h after TMZ and cell growth was evaluated after 3 additional days of culture. Parallel experiments were performed in the presence of O(6)-benzylguanine (BG), to prevent repair of methyl adducts at O(6)-guanine induced by TMZ. Drug combination of TMZ plus BG and PHA-848125 produced additive or synergistic effects on cell growth, depending on the cell line. In the absence of BG, the combination was still more active than the single agents in the cell line moderately sensitive to TMZ, but comparable to PHA-848125 alone in the two TMZ-resistant cell lines. When TMZ plus BG were used in combination with PHA-848125 against cultured normal melanocytes, neither synergistic nor additive antiproliferative effects were observed. Our results indicate that PHA-848125 can have a therapeutic potential in melanoma patients, alone or combined with TMZ. Moreover this agent appears to be particularly attractive on the bases of its effectiveness against TMZ-resistant melanoma cells.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Dacarbazina/análogos & derivados , Inibidores Enzimáticos/farmacologia , Melanoma/tratamento farmacológico , Pirazóis/farmacologia , Quinazolinas/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Corantes , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Análise Mutacional de DNA , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Genes p53/genética , Humanos , Melanoma/patologia , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Temozolomida , Sais de Tetrazólio , Tiazóis
11.
J Chemother ; 32(1): 30-40, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31775585

RESUMO

Fatty Acid Synthase (FASN) is responsible for the de novo synthesis of fatty acids, which are involved in the preservation of biological membrane structure, energy storage and assembly of factors involved in signal transduction. FASN plays a critical role in supporting tumor cell growth, thus representing a potential target for anti-cancer therapies. Moreover, this enzyme has been recently associated with increased PD-L1 expression, suggesting a role for fatty acids in the impairment of the immune response in the tumor microenvironment. Orlistat, a tetrahydrolipstatin used for the treatment of obesity, has been reported to reduce FASN activity, while inducing a sensible reduction of the growth potential in different cancer models. We have analyzed the effect of orlistat on different features involved in the tumor cell biology of the T-ALL Jurkat cell line. In particular, we have observed that orlistat inhibits Jurkat cell growth and induces a perturbation of cell cycle along with a decline of FASN activity and protein levels. Moreover, the drug produces a remarkable impairment of PD-L1 expression. These findings suggest that orlistat interferes with different mechanisms involved in the control of tumor cell growth and can potentially contribute to decrease the tumor-associated immune-pathogenesis.


Assuntos
Antígeno B7-H1/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Leucemia de Células T , Orlistate/farmacologia , Antígeno B7-H1/biossíntese , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Ácido Graxo Sintase Tipo I/efeitos dos fármacos , Humanos , Células Jurkat
12.
Int J Oncol ; 35(2): 393-400, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19578755

RESUMO

Altered expression of microRNAs (miRNAs) has been detected in cancer, suggesting that these small non-coding RNAs can act as oncogenes or tumor suppressor genes. In the present study, we investigated the expression of miRNA-17-5p, miRNA-18a, miRNA-20a, miRNA-92a, miRNA-146a, miRNA-146b and miRNA-155 by real-time quantitative RT-PCR in a panel of melanocyte cultures and melanoma cell lines and explored the possible role of miRNA-155 in melanoma cell proliferation and survival. The analyzed miRNAs were selected on the basis of previous studies strongly supporting their involvement in cancer development and/or progression. We found that miRNA-17-5p, miRNA-18a, miRNA-20a, and miRNA-92a were overexpressed, whereas miRNA-146a, miRNA-146b and miRNA-155 were down-regulated in the majority of melanoma cell lines with respect to melanocytes. Ectopic expression of miRNA-155 significantly inhibited proliferation in 12 of 13 melanoma cell lines with reduced levels of this miRNA and induced apoptosis in 4 out of 4 cell lines analyzed. In conclusion, our data further support the finding of altered miRNA expression in melanoma cells and establish for the first time that miRNA-155 is a negative regulator of melanoma cell proliferation and survival.


Assuntos
Melanoma/genética , Melanoma/patologia , MicroRNAs/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , MicroRNAs/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Genes Chromosomes Cancer ; 47(7): 614-24, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18384130

RESUMO

Constitutive activation of the Wnt pathway plays a key role in the development of colorectal cancer and has also been implicated in the pathogenesis of other malignancies. Deregulation of Wnt signaling mainly occurs through genetic alterations of APC, the beta-catenin gene (CTNNB1), AXIN1 and AXIN2, leading to stabilization of beta-catenin. Physiologically, AXIN2 is transcriptionally induced on Wnt signaling activation and acts as a negative feedback regulator of the pathway. In colorectal cancer, mutations in CTNNB1 and AXIN2 occur preferentially in tumors with inactivation of the mismatch repair (MMR) genes MSH2, MLH1, or PMS2. In this study, the expression of beta-catenin and AXIN2, and the mutational status of CTNNB1, APC, and AXIN2 were evaluated in two MMR-deficient (PR-Mel and MR-Mel) and seven MMR-proficient human melanoma cell lines. Only PR-Mel and MR-Mel cells showed nuclear accumulation of beta-catenin and expression of the AXIN2 gene, and hence, constitutive activation of Wnt signaling. Mutational analysis identified a somatic heterozygous missense mutation in CTNNB1 exon three and a germline heterozygous deletion within AXIN2 exon seven in PR-Mel cells, and a somatic biallelic deletion within APC in MR-Mel cells. Deregulation of Wnt signaling and a defective MMR system were also present in the original tumor of PR and MR patients. Thus, we describe additional melanomas with mutations in CTNNB1 and APC, identify for the first time a germline AXIN2 mutation in a melanoma patient and suggest that inactivation of the MMR system and deregulation of the Wnt/beta-catenin signaling pathway cooperate to promote melanoma development and/or progression.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Proteínas do Citoesqueleto/genética , Reparo de Erro de Pareamento de DNA , Melanoma/genética , Proteínas Wnt/genética , beta Catenina/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Proteína Axina , Northern Blotting , Western Blotting , Proteínas do Citoesqueleto/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Melanoma/metabolismo , Melanoma/patologia , Fragmentos de Peptídeos , Reação em Cadeia da Polimerase , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
14.
Mol Pharmacol ; 74(1): 173-83, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18413665

RESUMO

The phosphatidylinositol 3-kinase/AKT pathway is activated frequently in human cancer, and it has been implicated in tumor cell proliferation, survival, and chemoresistance. In this study, we addressed the role of AKT in cellular responses to the therapeutic methylating agent temozolomide (TMZ), and we investigated the possible link between TMZ-induced modulation of AKT function and activation of ataxia-telangiectasia and Rad3-related (ATR)- and ataxia telangiectasia mutated (ATM)-dependent signaling pathways. We found that clinically relevant concentrations of TMZ caused activation of endogenous AKT in lymphoblastoid cells, and in colon and breast cancer cells, and that this molecular event required a functional mismatch repair system. Transfection of a dominant-negative kinase-dead form of AKT1 into breast cancer cells abrogated TMZ-induced activation of endogenous AKT, and it markedly enhanced cell sensitivity to the drug. Likewise, exposure of the MMR-proficient cell lines to the AKT inhibitor D-3-deoxy-2-O-methyl-myo inositol 1-[(R)-2-methoxy-3-(octadecyloxy)-propyl hydrogen phosphate] (SH-5) impaired AKT phosphorylation in response to TMZ, and it significantly increased cell chemosensitivity. Furthermore, small interfering RNA (siRNA)-mediated reduction of AKT1 expression in colon cancer cells potentiated the growth inhibitory effects of TMZ. Inhibition of ATM expression in colon cancer cells by siRNA did not impair TMZ-induced activation of AKT, whereas siRNA-mediated inhibition of ATR prevented AKT activation in response to the drug and increased cell chemosensitivity. These results strongly support the hypothesis that clinical benefit could be obtained by combining TMZ with inhibitors of the AKT pathway. Moreover, they provide the first evidence of a novel function of ATR as an upstream activator of AKT in response to DNA damage induced by O(6)-guanine-methylating agents.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Dacarbazina/análogos & derivados , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Linfócitos B/fisiologia , Neoplasias da Mama/patologia , Carcinoma/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Dacarbazina/farmacologia , Feminino , Células HCT116 , Humanos , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-akt/genética , Temozolomida
15.
DNA Repair (Amst) ; 6(8): 1179-86, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17500047

RESUMO

Previous studies indicated that dacarbazine and Temozolomide could be highly effective against refractory acute leukaemia. Their activity relies mainly on the generation of methyl adducts at the O(6)-position of guanine in DNA. High levels of O(6)-methylguanine-DNA methyltransferase (MGMT) or a defective mismatch repair (MMR) system, are associated with cellular resistance to triazenes. The MGMT inhibitor, O(6)-(4-bromothenyl)guanine (Lomeguatrib), can restore in vitro sensitivity to Temozolomide in MMR-proficient blasts. In the early 1970s we discovered that, in vivo, triazene compounds induce the appearance of novel transplantation antigens in murine leukaemia ("Chemical Xenogenization", CX). Non-self peptides presented by class I MHC molecules are generated by triazene-induced somatic mutations, affecting retroviral sequences that are detectable in the mouse genome. Moreover, preliminary experiments suggested that human cancer cells can also undergo CX. Therefore, we designed a chemo-immunotherapy strategy in leukaemic patients as follows: (a) cytoreduction and a hypothetical CX phase, i.e. treatment with Lomeguatrib (to suppress MGMT activity) and Temozolomide (to kill sensitive blasts and to presumably induce CX in resistant leukaemic cells); (b) immune response recovery phase using interleukin-2 (to possibly restore an immune response and take advantage of the hypothetical, triazene-induced CX). Here we present the results of pilot study which is in progress in patients with refractory/relapsed acute leukaemia. In all tested cases, Lomeguatrib suppressed MGMT activity in vivo. Six out of eight patients showed partial or complete disappearance of blast cells in peripheral blood or in bone marrow. We observed severe and long-lasting myelosuppression, accompanied by limited non-haematological toxicity. Up to now, two patients are alive (after 9 and 10 months, respectively), four died of opportunistic infections and two of progressive disease. This investigation confirms the potential role of triazenes in leukaemia and highlights the contribution of Lomeguatrib in overcoming drug resistance. Further studies are required to establish whether Temozolomide can induce CX in human leukaemia, and thus offer a new approach to control minimal residual disease.


Assuntos
Dacarbazina/análogos & derivados , Interleucina-2/uso terapêutico , Leucemia/tratamento farmacológico , Leucemia/terapia , Purinas/uso terapêutico , Animais , Antineoplásicos Alquilantes/uso terapêutico , Terapia Combinada , Metilação de DNA , Metilases de Modificação do DNA/antagonistas & inibidores , Reparo do DNA , Enzimas Reparadoras do DNA/antagonistas & inibidores , Dacarbazina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/uso terapêutico , Humanos , Imunoterapia , Camundongos , O(6)-Metilguanina-DNA Metiltransferase/antagonistas & inibidores , Projetos Piloto , Temozolomida , Proteínas Supressoras de Tumor/antagonistas & inibidores
16.
Cancer Res ; 66(9): 4943-51, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16651452

RESUMO

The use of IFN-alpha in clinical oncology has generally been based on the rationale of exploiting its antiproliferative and antiangiogenic activities. However, IFN-alpha also exhibits enhancing effects on T-cell and dendritic cell functions, which may suggest a novel use as a vaccine adjuvant. We have carried out a pilot phase I-II trial to determine the effects of IFN-alpha, administered as an adjuvant of Melan-A/MART-1:26-35(27L) and gp100:209-217(210M) peptides, on immune responses in stage IV melanoma patients. In five of the seven evaluable patients, a consistent enhancement of CD8(+) T cells recognizing modified and native MART-1 and gp100 peptides and MART-1(+)gp100(+) melanoma cells was observed. Moreover, vaccination induced an increase in CD8(+) T-cell binding to HLA tetramers containing the relevant peptides and an increased frequency of CD45RA(+)CCR7(-) (terminally differentiated effectors) and CD45RA(-)CCR7(-) (effector memory) cells. In all patients, treatment augmented significantly the percentage of CD14(+) monocytes and particularly of the CD14(+)CD16(+) cell fraction. An increased expression of CD40 and CD86 costimulatory molecules in monocytes was also observed. Notably, postvaccination monocytes from two of the three patients showing stable disease or long disease-free survival showed an enhanced antigen-presenting cell function and capability to secrete IP10/CXCL10 when tested in mixed leukocyte reaction assays, associated to a boost of antigen and melanoma-specific CD8(+) T cells. Although further clinical studies are needed to show the adjuvant activity of IFN-alpha, the present data represent an important starting point for considering a new clinical use of IFN-alpha and new immunologic end points, potentially predictive of clinical response.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/uso terapêutico , Células Dendríticas/imunologia , Interferon-alfa/uso terapêutico , Melanoma/terapia , Glicoproteínas de Membrana/imunologia , Proteínas de Neoplasias/imunologia , Adjuvantes Imunológicos/uso terapêutico , Apresentação de Antígeno , Antígenos de Neoplasias , Vacinas Anticâncer/imunologia , Células Dendríticas/citologia , Antígenos HLA-A/imunologia , Antígeno HLA-A2 , Humanos , Imunofenotipagem , Ativação Linfocitária , Antígeno MART-1 , Melanoma/imunologia , Melanoma/patologia , Monócitos/citologia , Monócitos/imunologia , Estadiamento de Neoplasias , Projetos Piloto , Antígeno gp100 de Melanoma
17.
Int J Oncol ; 30(2): 443-51, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17203227

RESUMO

Hyperthermic isolated limb perfusion (HILP) with L-phenylalanine mustard (L-PAM) represents an effective treatment for locally advanced melanoma of the limbs. However, regional chemotherapy of melanoma still needs to be improved. Temozolomide (TMZ) is a methylating agent that spontaneously decomposes into the active metabolite of dacarbazine, the most effective agent for the systemic treatment of melanoma. Tumor cells with high levels of O6-methylguanine-DNA methyltransferase (MGMT) and/or with a defective DNA mismatch repair (MMR) are resistant to TMZ. Inhibition of MGMT activity increases TMZ sensitivity of MMR-proficient, but not of MMR-deficient cells, while inhibition of base excision repair (BER) potentiates TMZ cytotoxicity in both cell types. Recent studies, performed in an animal model, have shown that TMZ is more effective than L-PAM when applied regionally and that hyperthermia can increase the antitumor activity of TMZ. In this study, three thermoresistant human melanoma cell lines, endowed with different MGMT activity and functional status of the MMR system, were treated with TMZ at 37 degrees C or 41.5 degrees C for 90 min, and then analyzed for cell growth and MGMT activity. Hyperthermia significantly enhanced TMZ cytotoxicity in MMR-proficient cells, either endowed or not with MGMT activity, and in MMR-deficient cells. Endogenous MGMT activity was not affected by hyperthermia that, however, enhanced the enzyme depletion induced by TMZ treatment. Moreover, MGMT recovery after drug removal was delayed in cells that had been treated at 41.5 degrees C. Taken together, these findings confirm the therapeutic potential of a combined treatment of hyperthermia and TMZ. They also suggest that inhibition of BER and/or increased DNA methylation may be involved in the thermal enhancement of TMZ cytotoxicity. Additional studies are necessary to better clarify the mechanisms underlying hyperthermia-induced potentiation of TMZ activity. However, the present investigation provides further support to the development of clinical trials of HILP with TMZ.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Dacarbazina/análogos & derivados , Febre , Melanoma/tratamento farmacológico , Melanoma/patologia , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Pareamento Incorreto de Bases , Vacinas Anticâncer , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metilação de DNA , Reparo do DNA , Dacarbazina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Temozolomida
18.
Oncotarget ; 8(25): 41641-41669, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28404974

RESUMO

More than 40 years ago, we discovered that novel transplantation antigens can be induced in vivo or in vitro by treating murine leukemia with dacarbazine. Years later, this phenomenon that we called "Chemical Xenogenization" (CX) and more recently, "Drug-Induced Xenogenization" (DIX), was reproduced by Thierry Boon with a mutagenic/carcinogenic compound (i.e. N-methyl-N'-nitro-N-nitrosoguanidine). In both cases, the molecular bases of DIX rely on mutagenesis induced by methyl adducts to oxygen-6 of DNA guanine. In the present review we illustrate the main DIX-related immune-pharmacodynamic properties of triazene compounds of clinical use (i.e. dacarbazine and temozolomide).In recent years, tumor immunotherapy has come back to the stage with the discovery of immune checkpoint inhibitors (ICpI) that show an extraordinary immune-enhancing activity. Here we illustrate the salient biochemical features of some of the most interesting ICpI and the up-to-day status of their clinical use. Moreover, we illustrate the literature showing the direct relationship between somatic mutation burden and susceptibility of cancer cells to host's immune responses.When DIX was discovered, we were not able to satisfactorily exploit the possible presence of triazene-induced neoantigens in malignant cells since no device was available to adequately enhance host's immune responses in clinical settings. Today, ICpI show unprecedented efficacy in terms of survival times, especially when elevated mutation load is associated with cancer cells. Therefore, in the future, mutation-dependent neoantigens obtained by appropriate pharmacological intervention appear to disclose a novel approach for enhancing the therapeutic efficacy of ICpI in cancer patients.


Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Triazenos/farmacologia , Animais , Reparo do DNA , Humanos , Imunogenética , Camundongos , Terapia de Alvo Molecular/métodos , Neoplasias/genética , Neoplasias/imunologia , Triazenos/imunologia , Triazenos/uso terapêutico
19.
J Clin Oncol ; 23(35): 8950-8, 2005 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-16061910

RESUMO

PURPOSE: Tumor cell killing by anticancer drugs may be supported by their immuno- and pharmacologic effects. Chemotherapy is in fact able to (A) upregulate tumor-associated antigen expression, including carcinoembryonic antigen (CEA) or other target molecules such as thymidylate synthase (TS); and (B) downregulate tumor cell resistance to the death signals induced by tumor antigen-specific cytotoxic T lymphocytes. This provides the rationale for combining chemo- and immunotherapy. MATERIALS AND METHODS: We describe the results of a translational phase II trial designed to evaluate the toxicity, antitumor activity and immunologic effects of gemcitabine + FOLFOX-4 (oxaliplatin, fluorouracil, and folinic acid) polychemotherapy followed by the subcutaneous administration of granulocyte macrophage colony-stimulating factor and low-dose interleukin-2 in colorectal carcinoma patients. The study involved 29 patients (16 males and 13 females with a mean age of 69 years), 21 of whom had received a previous line of treatment, and 19 had liver involvement. RESULTS: The treatment was well tolerated and induced very high objective response (68.9%) and disease control rates (96.5%), with an average time to progression of 12.5 months. An immunologic study of peripheral blood mononuclear cells (PBMCs) taken from 20 patients showed an enhanced proliferative response to colon carcinoma antigen and a significant reduction in suppressive regulatory T lymphocytes (CD4+CD25T-reg+). A cytofluorimetric study of the PBMCs of five HLA-A(*)02.01+ patients who achieved an objective response showed an increased frequency of cytolytic T lymphocyte precursors specific for known CEA- and TS-derived epitopes. CONCLUSION: The results show that our regimen has strong immunologic and antitumor activity in colorectal cancer patients and deserves to be investigated in phase III trials.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Imunoterapia/métodos , Idoso , Antígenos de Neoplasias/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Antígeno Carcinoembrionário/imunologia , Neoplasias do Colo/imunologia , Neoplasias do Colo/secundário , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Citotoxicidade Imunológica/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/efeitos adversos , Desoxicitidina/análogos & derivados , Progressão da Doença , Feminino , Citometria de Fluxo , Fluoruracila/administração & dosagem , Fluoruracila/efeitos adversos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/efeitos adversos , Humanos , Infusões Intravenosas , Interleucina-2/administração & dosagem , Interleucina-2/efeitos adversos , Leucovorina/administração & dosagem , Leucovorina/efeitos adversos , Masculino , Compostos Organoplatínicos/administração & dosagem , Compostos Organoplatínicos/efeitos adversos , Oxaliplatina , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Timidilato Sintase/imunologia , Resultado do Tratamento , Gencitabina
20.
Int J Oncol ; 28(3): 641-8, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16465368

RESUMO

A number of previous studies investigated the in vitro effects of resveratrol on malignant human breast epithelial cell replication. The aim of the present study was to evaluate the activity of resveratrol on human metastatic breast cancer cells. The study was performed on the MCF-7 tumor cell line. Cell growth, cell cycle perturbation and apoptosis were evaluated by trypan blue dye exclusion assay, flow cytometric analysis and confocal fluorescence microscopy. TRAP assay and Western blot analysis respectively detected levels of telomerase activity and levels of hTERT in intracellular compartments of MCF-7 cells treated with resveratrol. Resveratrol has a direct inhibitory effect on cell proliferation. The results demonstrate that the drug induces apoptosis in MCF-7 cells, in a time- and concentration-related manner. Our results also show that the growth-inhibitory effect of resveratrol on malignant cells is mainly due to its ability to induce S-phase arrest and apoptosis in association with reduced levels of telomerase activity. In particular, TRAP assay and Western blot analysis respectively showed that resveratrol treatment down-regulates the telomerase activity of target cells and the nuclear levels of hTERT, the reverse transcriptase subunit of the telomerase complex. In our experimental model of breast cancer, resveratrol shows direct antiproliferative and pro-apoptotic effects. Studies on telomerase function and intracellular hTERT distribution point out that this agent is endowed with additional suppressive functions on critical tumor biological properties. These results speak in favor of a potential role of resveratrol in chemoprevention/chemotherapy of breast cancer.


Assuntos
Proliferação de Células/efeitos dos fármacos , Estilbenos/farmacologia , Telomerase/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Feminino , Citometria de Fluxo , Humanos , Microscopia Confocal , Resveratrol , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA