Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 35(40)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38604153

RESUMO

Nanoscale variations of optical properties in transition metal dichalcogenide (TMD) monolayers can be explored with cathodoluminescence (CL) and electron energy loss spectroscopy (EELS) using electron microscopes. To increase the CL emission intensity from TMD monolayers, the MoSe2flakes are encapsulated in hexagonal boron nitride (hBN), creating van der Waals (VdW) heterostructures. Until now, the studies have been exclusively focused on scanning transmission electron microscopy (STEM-CL) or scanning electron microscopy (SEM-CL), separately. Here, we present results, using both techniques on the same sample, thereby exploring a large acceleration voltage range. We correlate the CL measurements with STEM-EELS measurements acquired with different energy dispersions, to access both the low-loss region at ultra-high spectral resolution, and the core-loss region. This provides information about the weight of the various absorption phenomena including the direct TMD absorption, the hBN interband transitions, the hBN bulk plasmon, and the core losses of the atoms present in the heterostructure. The S(T)EM-CL measurements from the TMD monolayer only show emission from the A exciton. Combining the STEM-EELS and S(T)EM-CL measurements, we can reconstruct different decay pathways leading to the A exciton CL emission. The comparison with SEM-CL shows that this is also a good technique for TMD heterostructure characterization, where the reduced demands on sample preparation are appealing. To demonstrate the capabilities of SEM-CL imaging, we also measured on a SiO2/Si substrate, quintessential in the sample preparation of two-dimensional materials, which is electron-opaque and can only be measured in SEM-CL. The CL-emitting defects of SiO2make this substrate challenging to use, but we demonstrate that this background can be suppressed by using lower electron energy.

2.
Nano Lett ; 21(24): 10178-10185, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878799

RESUMO

Structural, electronic, and chemical nanoscale modifications of transition metal dichalcogenide monolayers alter their optical properties. A key missing element for complete control is a direct spatial correlation of optical response to nanoscale modifications due to the large gap in spatial resolution between optical spectroscopy and nanometer-resolved techniques. Here, we bridge this gap by obtaining nanometer-resolved optical properties using electron spectroscopy at cryogenic temperatures, specifically electron energy loss spectroscopy for absorption and cathodoluminescence for emission, which are then directly correlated to chemical and structural information. In an h-BN/WS2/h-BN heterostructure, we observe local modulation of the trion (X-) emission due to tens of nanometer wide dielectric patches. Trion emission also increases in regions where charge accumulation occurs, close to the carbon film supporting the heterostructures. The localized exciton emission (L) detected here is not correlated to strain above 1%, suggesting point defects might be involved in their formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA