Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Langmuir ; 35(10): 3717-3723, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30785301

RESUMO

During electrophoretic deposition of graphene oxide (GO) sheets on silicon substrates, not only deposition but also simultaneous anodic oxidation of the silicon substrate takes place, leading to a three-layered material. Scanning electron microscopy images reveal the presence of GO sheets on the silicon substrate, and this is also confirmed by X-ray photoelectron spectroscopy (XPS), albeit that the carbon portion increases with increasing emission angle, hinting at a thin carbon layer. With increasing applied potential and increasing conductivity of the GO solution, the carbon signal decreases, whereas the overall thickness of the added layer formed on top of the silicon substrate increases. Through XPS spectra in which the Si 2p peaks shifted under those conditions to 103-104 eV, we were able to conclude that significant amounts of oxygen are present, indicative of the formation of an oxide layer. This leads us to conclude that GO can be deposited using electrophoretic deposition, but that at the same time, silicon is oxidized, which may overshadow effects previously assigned to GO deposition.

2.
Crit Rev Food Sci Nutr ; 57(1): 197-211, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26066523

RESUMO

Assessment of sustainability will become more relevant for the food industry in the years to come. Analysis based on exergy, including the use of exergetic indicators and Grassmann diagrams, is a useful tool for the quantitative and qualitative assessment of the efficiency of industrial food chains. In this paper, we review the methodology of exergy analysis and the exergetic indicators that are most appropriate for use in the food industry. The challenges of applying exergy analysis in industrial food chains and the specific features of food processes are also discussed.


Assuntos
Eficiência Organizacional , Indústria Alimentícia/métodos , Qualidade dos Alimentos , Abastecimento de Alimentos/economia , Saúde Global , Modelos Econômicos , Avaliação de Programas e Projetos de Saúde , Animais , Eficiência Organizacional/economia , Indústria Alimentícia/economia , Indústria Alimentícia/tendências , Alimentos em Conserva/análise , Alimentos em Conserva/economia , Indústria de Processamento de Alimentos/economia , Indústria de Processamento de Alimentos/métodos , Indústria de Processamento de Alimentos/tendências , Saúde Global/economia , Humanos , Resíduos Industriais/economia , Resíduos Industriais/prevenção & controle , Valor Nutritivo , Avaliação de Programas e Projetos de Saúde/economia , Energia Renovável , Termodinâmica
3.
Membranes (Basel) ; 14(1)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276317

RESUMO

The classic application of ultrafiltration (UF) is for the complete retention of proteins, and in that situation, the transport behavior is well established. More open membranes with fractional retention are used when separating different proteins. However, protein transport has not been well documented yet in the literature. The bovine serum albumin (∼69 kDa) observed rejection ranges from 0.65 to 1 using a 300 kDa molecular weight cut-off membrane at different pH, ionic strength, and pressure. We demonstrated that, especially with open UF, the transport of proteins through the membrane is dominated by advection, with insignificant diffusion effects (p value > 0.05). We showed that with open UF, retention is not only caused by size exclusion but also to a large extent by electrostatic interactions and oligomerization of the proteins. Mass transfer in the polarization layer was relatively independent of the pH and ionic strength. It was underestimated by common Sherwood relations due to a relatively large contribution of the reduction in the flow turbulence near the membrane by the removal of fluid through the membrane. We propose a model that allows relatively quick characterization of the rejection of proteins without prior knowledge of the pore sizes and charges based on just a limited set of experiments. Therefore, protein rejection with the open UF system can be targeted by tuning the processing conditions, which might be useful for designing protein fractionation processes.

4.
Bioresour Technol ; 399: 130571, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518875

RESUMO

The extraction of oil from oilseeds in intact oleosomes is one of the suggested processes that could replace the extraction of oil by pressing and solvent extraction, being milder, environmentally less impactful and potentially more efficient in its use of resources. This study assesses the latter using an exergy assessment of oleosome extraction for food emulsions. The contribution of each part of the process to the overall impact was investigated. Based on current lab-scale data, oleosome extraction has nearly twice the exergy loss compared to the industrial process of oil extraction and industrial assembly of emulsions. The exergy losses of the lab-scale oleosome extraction are currently dominated by the chemical exergy associated with product loss during the separation of oleosomes from the rest of the biomass. This loss is expected to significantly decrease when upscaled to industrial scale. When substituted with industrial material efficiencies, the total exergy loss decreased to nearly a quarter of the original loss, representing oleosome extraction as a potentially more effective and environment-friendly option.


Assuntos
Capsicum , Gotículas Lipídicas , Emulsões , Cânfora , Mentol , Verduras , Sementes
5.
J Sep Sci ; 36(7): 1185-91, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23471886

RESUMO

The adsorption of bovine serum albumin (BSA) to an immobilized camelid-derived antibody fragment was investigated using six different activated resins, of which two are prototypes. The resins differed in base material, coupling chemistry and particle size. The adsorption, washing and desorption stage of the affinity chromatography process were taken into account. Dynamic binding capacities at 10% breakthrough ranged between 0.76 and 4.8 mg BSA/mL resin. The washing volume ranged between 2.9 and 10 column volumes. One of the resins did not concentrate BSA, while the highest concentration was 13-fold. We present a method to rank and weigh the properties of the resins to find the optimal resin to meet specific requirements. For three of the resins the adsorption flow rate was varied, while the washing and desorption flow rate was kept the same. The dynamic binding capacity decreased with increasing flow rate, as expected. For one resin, the washing volume remained constant, but for the others it decreased with increasing adsorption flow rate. The number of column volumes required to purify a given amount of BSA increases with increasing flow rate, which indicates that higher flow rates do not necessarily speed up the process.


Assuntos
Proteínas Imobilizadas/química , Resinas de Troca Iônica/química , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Cromatografia , Cromatografia de Afinidade , Proteínas Imobilizadas/metabolismo , Ligantes , Tamanho da Partícula , Sefarose/química , Soroalbumina Bovina/metabolismo
6.
Curr Res Food Sci ; 6: 100511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200969

RESUMO

3D food printing can customize food appearance, textures, and flavors to tailor to specific consumer needs. Current 3D food printing depends on trial-and-error optimization and experienced printer operators, which limits the adoption of the technology by general consumers. Digital image analysis can be applied to monitor the 3D printing process, quantify printing errors, and guide optimization of the printing process. We here propose an automated printing accuracy assessment tool based on layer-wise image analysis. Printing inaccuracies are quantified based on over- and under-extrusion with reference to the digital design. The measured defects are compared to human evaluations via an online survey to contextualize the errors and identify the most useful measurements to improve printing efficiency. The survey participants marked oozing and over-extrusion as inaccurate printing which matched the results obtained from automated image analysis. Although under-extrusion was also quantified by the more sensitive digital tool, the survey participants did not perceive consistent under-extrusion as inaccurate printing. The contextualized digital assessment tool provides useful estimations of printing accuracy and corrective actions to avoid printing defects. The digital monitoring approach may accelerate the consumer adoption of 3D food printing by improving the perceived accuracy and efficiency of customized food printing.

7.
Food Res Int ; 173(Pt 1): 113315, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803629

RESUMO

Industrial-scale production of recombinant proteins for food products may become economically feasible but correct post-translational modification of proteins by microbial expression systems remains a challenge. For efficient production of hybrid products from bovine casein and recombinant casein, it is therefore of interest to evaluate the necessity of casein post-translational phosphorylation for the preparation of hybrid casein micelles and study their rennet-induced coagulation. Our results show that dephosphorylated casein was hardly incorporated into artificial casein micelles but was capable of stabilising calcium phosphate nanoclusters with an increased size through adsorption on their surface. Thereby, dephosphorylated casein formed larger colloidal particles with a decreased hydration. Furthermore, the presence of increasing amounts of dephosphorylated casein resulted in increasingly poor rennet coagulation behaviour, where dephosphorylated casein disrupted the formation of a coherent gel network by native casein. These results emphasise that post-translational phosphorylation of casein is crucial for their assembly into micelles and thereby for the production of dairy products for which the casein micelle structure is a prerequisite, such as many cheese varieties and yoghurt. Therefore, phosphorylation of future recombinant casein is essential to allow its use in the production of animal-free dairy products.


Assuntos
Queijo , Micelas , Animais , Bovinos , Caseínas/química , Fosforilação , Leite/química
8.
Curr Res Food Sci ; 7: 100601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822318

RESUMO

Food ingredients with a low degree of refining consist of multiple components. Therefore, it is essential to formulate food products based on techno-functional properties rather than composition. We assessed the potential of quantifying techno-functional properties of ingredient blends from multiple crops as opposed to single crops. The properties quantified were gelation, viscosity, emulsion stability, and foaming capacity of ingredients from yellow pea and lupine seeds. The relationships were quantified using spline regression, random forest, and neural networks. Suitable models were picked based on model accuracy and physical feasibility of model predictions. A single model to quantify the properties of both crops could be created for each techno-functional property, albeit with a trade-off of higher prediction errors as compared to models based on individual crops. A reflection on the number of observations in each dataset showed that they could be reduced for some properties.

9.
Int J Biol Macromol ; 242(Pt 2): 124855, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37187417

RESUMO

Functional nanofibrils from globular proteins are usually formed by heating for several hours at pH 2.0, which induces acidic hydrolysis and consecutive self-association. The functional properties of these micro-metre-long anisotropic structures are promising for biodegradable biomaterials and food applications, but their stability at pH > 2.0 is low. The results presented here show that modified ß-lactoglobulin can also form nanofibrils by heating at neutral pH without prior acidic hydrolysis; the key is removing covalent disulfide bonds via precision fermentation. The aggregation behaviour of various recombinant ß-lactoglobulin variants was systemically studied at pH 3.5 and 7.0. The suppression of intra- and intermolecular disulfide bonds by eliminating one to three out of the five cysteines makes the non-covalent interactions more prevalent and allow for structural rearrangement. This stimulated the linear growth of worm-like aggregates. Full elimination of all five cysteines led to the transformation of worm-like aggregates into actual fibril structures (several hundreds of nanometres long) at pH 7.0. This understanding of the role of cysteine in protein-protein interactions will help to identify proteins and protein modifications to form functional aggregates at neutral pH.


Assuntos
Amiloide , Lactoglobulinas , Lactoglobulinas/genética , Lactoglobulinas/química , Amiloide/química , Proteínas Amiloidogênicas , Concentração de Íons de Hidrogênio , Dissulfetos/química
10.
Appl Environ Microbiol ; 78(22): 8082-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22983965

RESUMO

Survival of probiotic bacteria during drying is not trivial. Survival percentages are very specific for each probiotic strain and can be improved by careful selection of drying conditions and proper drying carrier formulation. An experimental approach is presented, comprising a single-droplet drying method and a subsequent novel screening methodology, to assess the microbial viability within single particles. The drying method involves the drying of a single droplet deposited on a flat, hydrophobic surface under well-defined drying conditions and carrier formulations. Semidried or dried particles were subjected to rehydration, fluorescence staining, and live/dead enumeration using fluorescence microscopy. The novel screening methodology provided accurate survival percentages in line with conventional plating enumeration and was evaluated in single-droplet drying experiments with Lactobacillus plantarum WCFS1 as a model probiotic strain. Parameters such as bulk air temperatures and the carrier matrices (glucose, trehalose, and maltodextrin DE 6) were varied. Following the experimental approach, the influence on the viability as a function of the drying history could be monitored. Finally, the applicability of the novel viability assessment was demonstrated for samples obtained from drying experiments at a larger scale.


Assuntos
Carga Bacteriana/métodos , Dessecação , Lactobacillus plantarum/fisiologia , Viabilidade Microbiana , Programas de Rastreamento/métodos , Microscopia de Fluorescência/métodos , Estresse Fisiológico
11.
Foods ; 11(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35327292

RESUMO

Plant protein concentrates and isolates are used to produce alternatives to meat, dairy and eggs. Fractionation of ingredients and subsequent processing into food products modify the techno-functional and nutritional properties of proteins. The differences in composition and structure of plant proteins, in addition to the wide range of processing steps and conditions, can have ambivalent effects on protein digestibility. The objective of this review is to assess the current knowledge on the effect of processing of plant protein-rich ingredients on their digestibility. We obtained data on various fractionation conditions and processing after fractionation, including enzymatic hydrolysis, alkaline treatment, heating, high pressure, fermentation, complexation, extrusion, gelation, as well as oxidation and interactions with starch or fibre. We provide an overview of the effect of some processing steps for protein-rich ingredients from different crops, such as soybean, yellow pea, and lentil, among others. Some studies explored the effect of processing on the presence of antinutritional factors. A certain degree, and type, of processing can improve protein digestibility, while more extensive processing can be detrimental. We argue that processing, protein bioavailability and the digestibility of plant-based foods must be addressed in combination to truly improve the sustainability of the current food system.

12.
Food Chem ; 387: 132894, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35397266

RESUMO

We report on the effect of processing, particularly heating, on the digestion dynamics of pea proteins using the standardised semi-dynamic in vitro digestion method. Fractions with native proteins were obtained by mild aqueous fractionation of pea flour. A commercial pea protein isolate was chosen as a benchmark. Heating dispersions of pea flour and mild protein fractions reduced the trypsin inhibitory activity to levels similar to that of the protein isolate. Protein-rich and non-soluble protein fractions were up to 18% better hydrolysed after being thermally denatured, particularly for proteins emptied later in the gastric phase. The degree of hydrolysis throughout the digestion was similar for these heated fractions and the conventional isolate. Further heating of the protein isolate reduced its digestibility as much as 9%. Protein solubility enhances the digestibility of native proteins, while heating aggregates the proteins, which ultimately reduces the achieved extent of hydrolysis from gastro-small intestinal enzymes.


Assuntos
Proteínas de Ervilha , Digestão , Farinha , Trato Gastrointestinal/metabolismo , Hidrólise , Proteínas de Ervilha/metabolismo
13.
Food Res Int ; 152: 110889, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35181070

RESUMO

Currently, food industries typically favour formulation of food products using highly refined techno-functional ingredients of high purity. However, there is a growing interest in less pure techno-functional ingredients with a lower degree of refining as they deliver the same functional properties with reduced environmental impact. We propose that instead of selecting formulations based on purity, they should be selected based on their techno-functional properties. This article illustrates that the shift in perspective may increase the sustainability of food production. The functionality-driven product formulation is explored through a case study in which yellow pea ingredients are selected to increase the viscosity of a salad dressing. The relation between the ingredients (in terms of composition; protein, starch fibre, and a residual fraction) and the final viscosity was quantified and validated using multiple linear regression. The model described the observations well: the final viscosity is mostly dominated by the starch content; protein content has only a marginal impact; and dietary fibre contributes to viscosity with an antagonistic effect with starch. Based on the multiple linear regression model and further formulation optimisation, we identified various combinations of ingredients (with either a high or low degree of refining) that would result in the target final viscosity. An evaluation of the global warming potential of all blends showed that the desired viscosity could be achieved using only isolates, as well as by using only mildly refined fractions. The latter is associated with a global warming potential that is 80% lower than the one based on isolates. This case study demonstrates the proof of concept for this approach, showing it can aid in identifying alternative product formulations with similar techno-functional properties but with a higher sustainability.


Assuntos
Fibras na Dieta , Amido , Condimentos , Indústria Alimentícia , Viscosidade
14.
Food Res Int ; 157: 111271, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761583

RESUMO

We present a dynamic, semi-mechanistic, compartmental protein digestion model to study the kinetics of protein digestion. The digestive system is described as a series of eight compartments: one for the stomach, one for the duodenum, two for the jejunum and four for the ileum. The digestive processes are described by a set of zero or first order differential equations. The model considers ingestion of a meal, secretion of gastric and pancreatic juices, protein hydrolysis, grinding, transit and amino acid absorption. The model was used to simulate protein digestion of a meal composed of a solid and a liquid phase or one where both phases are blended into a homogeneous phase. Luminal volumes and pH of gastric and duodenal contents were estimated for both meals. Further, gastric emptying is described as a function of the energy density of the bolus, instead of the more common mass action approach.


Assuntos
Motilidade Gastrointestinal , Estômago , Simulação por Computador , Refeições , Proteólise
15.
Sci Rep ; 12(1): 1334, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079006

RESUMO

The interest in plant-based meat analogues as an alternative to meat is currently growing. Rheological benchmarking is used to reveal how closely meat analogues resemble the original meat products. Texture maps and dissipation colour schemes were used to reveal similarities in and differences between rheological responses of meat and meat analogues (especially chicken analogues). Under heating, meat analogues differ in terms of their lower elasticity compared with heated meat. The changes caused by heating meat and meat analogues were different as well. Heating of meat resulted in a tougher and more elastic material, while heating has a minor effect on meat analogues. Future developments should therefore focus on routes to create more elasticity and possibly allow heating effects on texture to mimic meat characteristics even better.

16.
J Sep Sci ; 34(11): 1338-46, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21495190

RESUMO

Processes such as chromatographic separation and nanofiltration can remove low molecular weight sugars from liquid mixtures of oligosaccharides. As an alternative for the separation of such liquid mixtures, we studied mass diffusion separation of such sugars in a microfluidic device with incorporated nanofiltration membranes. This separation method is based on differences between diffusivities of components and does not require high transmembrane pressures. The effects of channel depth and flow rate were studied in experiments. The key parameters selectivity and rejection increased with increasing channel depth due to increased external mass transfer limitations. Among the studied membranes, the obtained selectivities and rejections correlated to the specified retention values by the manufacturers. Compared to more conventional nanofiltration where high pressure forces solutes through membranes, we obtained corresponding selectivities and fluxes of only an order of magnitude smaller. Simulated results indicated that with optimized microchannel and membrane dimensions, the presented separation process can compete with currently available separation technologies.


Assuntos
Carboidratos/isolamento & purificação , Membranas Artificiais , Técnicas Analíticas Microfluídicas/métodos , Nanotecnologia , Difusão , Filtração/instrumentação , Peso Molecular , Nanotecnologia/instrumentação
17.
Food Funct ; 12(10): 4570-4581, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33908536

RESUMO

Enzyme-catalysed hydrolysis is important in protein digestion. Protein hydrolysis is initiated by pepsin at low pH in the stomach. However, pepsin action and acidification happen simultaneously to gastric emptying, especially for liquid meals. Therefore, different extents of exposure to the gastric environment change the composition of the chyme that is emptied from the stomach into the small intestine over time. We assessed the susceptibility of a protein to trypsin-catalysed hydrolysis in the small intestine, depending on its pH and hydrolysis history, simulating chyme at different times after the onset of gastric emptying. Isothermal titration calorimetry was used to study the kinetics of pepsin and trypsin-catalysed hydrolysis. Bovine serum albumin (BSA) that was acidified and hydrolysed with pepsin, showed the highest extent and most efficient hydrolysis by trypsin. BSA in the chyme that would be first emptied from the stomach, virtually bypassing gastric acidity and peptic action, reduced trypsin-catalysed hydrolysis by up to 58% compared to the acidified, intact protein, and 77% less than the acidified, pepsin-hydrolysate. The least efficient substrate for trypsin-catalysed hydrolysis was the acidified, intact protein with a specificity constant (kcat/Km) nearly five times lower than that of the acidified, pepsin-hydrolysate. Our results illustrate the synergy between pepsin and trypsin hydrolysis, and indicate that gastric hydrolysis increases the efficiency of the subsequent trypsin-catalysed hydrolysis of a model protein in the small intestine.


Assuntos
Pepsina A/metabolismo , Tripsina/metabolismo , Calorimetria , Catálise , Digestão , Esvaziamento Gástrico , Concentração de Íons de Hidrogênio , Hidrólise , Conformação Proteica , Soroalbumina Bovina/metabolismo , Estômago
18.
Annu Rev Food Sci Technol ; 12: 29-50, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33400559

RESUMO

The increasing size and affluence of the global population have led to a rising demand for high-protein foods such as dairy and meat. Because it will be impossible to supply sufficient protein to everyone solely with dairy and meat, we need to transition at least part of our diets toward protein foods that are more sustainable to produce. The best way to convince consumers to make this transition is to offer products that easily fit into their current habits and diets by mimicking the original foods. This review focuses on methods of creating an internal microstructure close to that of the animal-based originals. One can directly employ plant products, use intermediates such as cell factories, or grow cultured meat by using nutrients of plant origin. We discuss methods of creating high-quality alternatives to meat and dairy foods, describe their relative merits, and provide an outlook toward the future.


Assuntos
Dieta , Carne , Animais , Laticínios , Carne/análise
19.
Langmuir ; 26(24): 19106-13, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21090824

RESUMO

Despite the fair number of microencapsulation principles that have been developed, the actual protection and targeted delivery of sensitive ingredients remains a challenge in the food industry. A suitable technique should use food-grade and inexpensive materials, and ensure tight control over the capsule size and release trigger mechanism. For example, encapsulates may need to survive the low pH of the stomach to release their contents in the neutral environment of the small intestine. In this work we present layer-by-layer (LbL) microcapsules assembled from whey protein isolate (WPI), high-methoxyl pectin (HMP) and WPI-fibrils. The narrow size distribution of these capsules is determined by the oil-in-water droplets used as templates, and their mechanical properties and pH response can be tuned by the number of layers adsorbed. Capsules with more than eight layers have a mechanical strength comparable to chemically cross-linked polymer capsules, because of the reinforcement by the WPI-fibrils in combination with the shell completion. Typically, capsules with five layers survive pH 2 for more than 2 h, but dissolve within 30 min at pH 7. At higher number of layers, the capsules are even more stable. Contrary to other encapsulates, these capsules can be dried and are suitable for application in dry products.


Assuntos
Fenômenos Mecânicos , Microtecnologia/métodos , Proteínas do Leite/química , Adsorção , Cápsulas , Concentração de Íons de Hidrogênio , Microscopia , Óleos/química , Pectinas/química , Eletricidade Estática , Propriedades de Superfície , Proteínas do Soro do Leite
20.
Membranes (Basel) ; 10(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096910

RESUMO

Fructose and glucose are commonly present together in mixtures and may need to be separated. Current separation methods for these isomers are complex and costly. Nanofiltration is a cost-effective method that has been widely used for separating carbohydrates of different sizes; however, it is not commonly used for such similar molecules. Here, we report the separation of fructose and glucose in a nanofiltration system in the presence of fructooligosaccharides (FOS). Experiments were performed using a pilot-scale filtration setup using a spiral wound nanofiltration membrane with molecular weight cutoff of 1 kDa. We observed three important factors that affected the separation: (1) separation of monosaccharides only occurred in the presence of FOS and became more effective when FOS dominated the solution; (2) better separation was achieved when the monosaccharides were mainly fructose; and (3) the presence of salt improved the separation only moderately. The rejection ratio (Rf/Rg) in a fructose/glucose mixture is 0.92. We reported a rejection ratio of 0.69, which was observed in a mixture of 50 g/L FOS with a fructose to glucose ratio of 4.43. The separation is hypothesized to occur due to selective transport in the FOS layer, resulting in a preferential binding towards fructose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA