Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1269211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469233

RESUMO

Purpose: Isolating circulating tumour cells (CTCs) from the blood is challenging due to their low abundance and heterogeneity. Limitations of conventional CTC detection methods highlight the need for improved strategies to detect and isolate CTCs. Currently, the Food and Drug Administration (FDA)-approved CellSearch™ and other RUO techniques are not available in India. Therefore, we wanted to develop a flexible CTC detection/isolation technique that addresses the limitation(s) of currently available techniques and is suitable for various downstream applications. Methods: We developed a novel, efficient, user-friendly CTC isolation strategy combining density gradient centrifugation and immuno-magnetic hematogenous cell depletion with fluorescence-activated cell sorting (FACS)-based positive selection using multiple CTC-specific cell-surface markers. For FACS, a stringent gating strategy was optimised to exclude debris and doublets by side scatter/forward scatter (SSC/FSC) discriminator, remove dead cells by 4',6-diamidino-2-phenylindole (DAPI) staining, and eliminate non-specific fluorescence using a "dump" channel. APC-labelled anti-CD45mAB was used to gate remaining hematogenous cells, while multiple epithelial markers (EpCAM, EGFR, and Pan-Cytokeratin) and an epithelial-mesenchymal transition (EMT) marker (Vimentin) labelled with fluorescein isothiocyanate (FITC) were used to sort cancer cells. The technique was initially developed by spiking Cal 27 cancer cells into the blood of healthy donors and then validated in 95 biopsy-proven oral squamous cell carcinoma (OSCC) patients. CTCs isolated from patients were reconfirmed by Giemsa staining, immuno-staining, and whole transcriptome amplification (WTA), followed by qRT-PCR. In vitro culture and RNA sequencing (RNA-Seq) were also performed to confirm their suitability for various downstream applications. Results: The mean detection efficiency for the Cal 27 tongue cancer cells spiked in the whole blood of healthy donors was 32.82% ± 12.71%. While ~75% of our patients (71/95) had detectable CTCs, the CTC positivity was independent of the TNM staging. The isolated potential cancer cells from OSCC patients were heterogeneous in size. They expressed different CTC-specific markers in various combinations as identified by qRT-PCR after WTA in different patients. Isolated CTCs were also found to be suitable for downstream applications like short-term CTC culture and RNA-Seq. Conclusion: We developed a sensitive, specific, flexible, and affordable CTC detection/isolation technique, which is scalable to larger patient cohorts, provides a snapshot of CTC heterogeneity, isolates live CTCs ready for downstream molecular analysis, and, most importantly, is suitable for developing countries.

2.
Arch Oral Biol ; 137: 105395, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35299001

RESUMO

OBJECTIVES: Genomic instability in cancers is often associated with poor disease outcomes. In Head and Neck Squamous Cell Carcinoma (HNSCC), saliva being the contact fluid contains cancers cells shed from the primary tumour. This study detected genomic instability from cancer cells shed in saliva and correlated the same with clinical implications. DESIGN: Genomic instability in HNSCC patients (n = 81) was analysed and compared with control subjects (n = 30). Alu sequences were amplified from the DNA of the cells shed in saliva and from the blood (Germline DNA) using Alu-PCR. Band variations between amplified products of salivary cells' DNA and germline DNA were compared. 'Instability Score' was calculated by counting the band variation(s). The 'Instability Score' was further used as a measure of genomic instability. RESULTS: Higher instability was detected in patients as compared to the controls (p < 0.0001). After treatment, there was a significant decrease (p < 0.0001) in the Instability score and patients with higher instability scores responded better to radiotherapy. The patient group consuming both tobacco and alcohol had a higher instability score in comparison to the tobacco group (p = 0.0056). Also, Instability scores are inversely correlated with nodal metastasis (p = 0.0075). A high Instability score before treatment resulted in a better prognosis in HNSCC patients (HR: 1.8, 95%CI: 1.024-3.164, p = 0.0306). CONCLUSION: Our data suggest that genomic instability estimated from the tumour cells shed in the saliva of HNSCC patients by amplifying Alu sequence (Alu-PCR) is associated with radiotherapy response.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Instabilidade Genômica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Saliva , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA