Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Cell Sci ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910449

RESUMO

RhoA plays a crucial role in neuronal polarization, where its action restraining axon outgrowth has been thoroughly studied. We now report that RhoA has not only inhibitory but also a stimulatory effect on axon development depending on when and where exerts its action and the downstream effectors involved. In cultured hippocampal neurons, FRET imaging revealed that RhoA activity selectively localizes in growth cones of undifferentiated neurites, while in developing axons it displays a biphasic pattern, being low in nascent axons and high in elongating ones. RhoA-Rho kinase (ROCK) signaling prevents axon initiation but has no effect on elongation, while formin inhibition reduces axon extension without significantly altering initial outgrowth. Besides, RhoA-mDia promotes axon elongation by stimulating growth cone microtubule stability and assembly, as opposed to RhoA-ROCK that restrains growth cone microtubule assembly and protrusion.

2.
Nat Struct Mol Biol ; 27(2): 210-220, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32015554

RESUMO

Neddylation is the post-translational protein modification most closely related to ubiquitination. Whereas the ubiquitin-like protein NEDD8 is well studied for its role in activating cullin-RING E3 ubiquitin ligases, little is known about other substrates. We developed serial NEDD8-ubiquitin substrate profiling (sNUSP), a method that employs NEDD8 R74K knock-in HEK293 cells, allowing discrimination of endogenous NEDD8- and ubiquitin-modification sites by MS after Lys-C digestion and K-εGG-peptide enrichment. Using sNUSP, we identified 607 neddylation sites dynamically regulated by the neddylation inhibitor MLN4924 and the de-neddylating enzyme NEDP1, implying that many non-cullin proteins are neddylated. Among the candidates, we characterized lysine 112 of the actin regulator cofilin as a novel neddylation event. Global inhibition of neddylation in developing neurons leads to cytoskeletal defects, altered actin dynamics and neurite growth impairments, whereas site-specific neddylation of cofilin at K112 regulates neurite outgrowth, suggesting that cofilin neddylation contributes to the regulation of neuronal actin organization.


Assuntos
Actinas/metabolismo , Cofilina 1/metabolismo , Proteína NEDD8/metabolismo , Neurônios/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína NEDD8/genética , Neurônios/citologia , Mutação Puntual , Ratos , Ratos Sprague-Dawley , Ubiquitina/metabolismo , Ubiquitinação
4.
Sci Rep ; 8(1): 3007, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445221

RESUMO

Axonal degeneration occurs in the developing nervous system for the appropriate establishment of mature circuits, and is also a hallmark of diverse neurodegenerative diseases. Despite recent interest in the field, little is known about the changes (and possible role) of the cytoskeleton during axonal degeneration. We studied the actin cytoskeleton in an in vitro model of developmental pruning induced by trophic factor withdrawal (TFW). We found that F-actin decrease and growth cone collapse (GCC) occur early after TFW; however, treatments that prevent axonal fragmentation failed to prevent GCC, suggesting independent pathways. Using super-resolution (STED) microscopy we found that the axonal actin/spectrin membrane-associated periodic skeleton (MPS) abundance and organization drop shortly after deprivation, remaining low until fragmentation. Fragmented axons lack MPS (while maintaining microtubules) and acute pharmacological treatments that stabilize actin filaments prevent MPS loss and protect from axonal fragmentation, suggesting that MPS destruction is required for axon fragmentation to proceed.


Assuntos
Actinas/metabolismo , Axônios/patologia , Membrana Celular/metabolismo , Cones de Crescimento/patologia , Plasticidade Neuronal , Degeneração Retrógrada , Espectrina/metabolismo , Citoesqueleto de Actina , Animais , Axônios/metabolismo , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Ratos , Ratos Wistar
5.
6.
Sci Rep ; 7(1): 16029, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167561

RESUMO

Fluorescence nanoscopy imaging permits the observation of periodic supramolecular protein structures in their natural environment, as well as the unveiling of previously unknown protein periodic structures. Deciphering the biological functions of such protein nanostructures requires systematic and quantitative analysis of large number of images under different experimental conditions and specific stimuli. Here we present a method and an open source software for the automated quantification of protein periodic structures in super-resolved images. Its performance is demonstrated by analyzing the abundance and regularity of the spectrin membrane-associated periodic skeleton (MPS) in hippocampal neurons of 2 to 40 days in vitro, imaged by STED and STORM nanoscopy. The automated analysis reveals that both the abundance and the regularity of the MPS increase over time and reach maximum plateau values after 14 DIV. A detailed analysis of the distributions of correlation coefficients provides indication of dynamical assembly and disassembly of the MPS.


Assuntos
Membrana Celular/metabolismo , Hipocampo/metabolismo , Microscopia de Fluorescência/métodos , Espectrina/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células Cultivadas , Imunofluorescência , Camundongos , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA