Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 159(6): 1447-60, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25433700

RESUMO

The spectrin superfamily of proteins plays key roles in assembling the actin cytoskeleton in various cell types, crosslinks actin filaments, and acts as scaffolds for the assembly of large protein complexes involved in structural integrity and mechanosensation, as well as cell signaling. α-actinins in particular are the major actin crosslinkers in muscle Z-disks, focal adhesions, and actin stress fibers. We report a complete high-resolution structure of the 200 kDa α-actinin-2 dimer from striated muscle and explore its functional implications on the biochemical and cellular level. The structure provides insight into the phosphoinositide-based mechanism controlling its interaction with sarcomeric proteins such as titin, lays a foundation for studying the impact of pathogenic mutations at molecular resolution, and is likely to be broadly relevant for the regulation of spectrin-like proteins.


Assuntos
Actinina/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Músculo Esquelético/química , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Difração de Raios X
2.
J Am Chem Soc ; 146(12): 8308-8319, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483324

RESUMO

Modulation of absorbance and emission is key for the design of chiral chromophores. Accessing a series of compounds absorbing and emitting (circularly polarized) light over a wide spectral window and often toward near-infrared is of practical value in (chir)optical applications. Herein, by late-stage functionalization on derivatives bridging triaryl methyl and helicene domains, we have achieved the regioselective triple introduction of para electron-donating or electron-withdrawing substituents. Extended tuning of electronic (e.g., E1/2red -1.50 V → -0.68 V) and optical (e.g., emission covering from 550 to 850 nm) properties is achieved for the cations and neutral radicals; the latter compounds being easily prepared by mono electron reductions under electrochemical or chemical conditions. While luminescence quantum yields can be increased up to 70% in the cationic series, strong Cotton effects are obtained for certain radicals at low energies (λabs ∼ 700-900 nm) with gabs values above 10-3. The open-shell electronic nature of the radicals was further characterized by electron paramagnetic resonance revealing an important spin density delocalization that contributes to their persistence.

3.
Chemistry ; 29(3): e202203149, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36239437

RESUMO

Carbenes with conjugatively connected redox system act as "auto-umpolung" ligands. Due to their electronic flexibility, they should also be particularly suitable to stabilize open-shell species. Herein, the first neutral radical of such sort is described in form of a dialkylamino-substituted bis(dicyanomethylene)cyclopropanide. Despite the absence of steric shielding, the radical is stable for an extended amount of time and was consequently characterized in solution via EPR measurements. These data and accompanying X-ray structural analyses indicate that the radical species is in equilibrium with aggregates (formed via π-stacking) and dimers (obtained via σ-bond formation between methylene carbons).


Assuntos
Ligantes , Oxirredução
4.
J Phys Chem A ; 127(31): 6447-6466, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37524058

RESUMO

Nitroxides are common EPR sensors of microenvironmental properties such as polarity, numbers of H-bonds, pH, and so forth. Their solvation in an aqueous environment is facilitated by their high propensity to form H-bonds with the surrounding water molecules. Their g- and A-tensor elements are key parameters to extracting the properties of their microenvironment. In particular, the gxx value of nitroxides is rich in information. It is known to be characterized by discrete values representing nitroxide populations previously assigned to have different H-bonds with the surrounding waters. Additionally, there is a large g-strain, that is, a broadening of g-values associated with it, which is generally correlated with environmental and structural micro-heterogeneities. The g-strain is responsible for the frequency dependence of the apparent line width of the EPR spectra, which becomes evident at high field/frequency. Here, we address the molecular origin of the gxx heterogeneity and of the g-strain of a nitroxide moiety (HMI: 2,2,3,4,5,5-hexamethylimidazolidin-1-oxyl, C9H19N2O) in water. To treat the solvation effect on the g-strain, we combined a multi-frequency experimental approach with ab initio molecular dynamics simulations for structural sampling and quantum chemical EPR property calculations at the highest realistically affordable level, including an explicitly micro-solvated HMI ensemble and the embedded cluster reference interaction site model. We could clearly identify the distinct populations of the H-bonded nitroxides responsible for the gxx heterogeneity experimentally observed, and we dissected the role of the solvation shell, H-bond formation, and structural deformation of the nitroxide in the creation of the g-strain associated with each nitroxide subensemble. Two contributions to the g-strain were identified in this study. The first contribution depends on the number of hydrogen bonds formed between the nitroxide and the solvent because this has a large and well-understood effect on the gxx-shift. This contribution can only be resolved at high resonance frequencies, where it leads to distinct peaks in the gxx region. The second contribution arises from configurational fluctuations of the nitroxide that necessarily lead to g-shift heterogeneity. These contributions cannot be resolved experimentally as distinct resonances but add to the line broadening. They can be quantitatively analyzed by studying the apparent line width as a function of microwave frequency. Interestingly, both theory and experiment confirm that this contribution is independent of the number of H-bonds. Perhaps even more surprisingly, the theoretical analysis suggests that the configurational fluctuation broadening is not induced by the solvent but is inherently present even in the gas phase. Moreover, the calculations predict that this broadening decreases upon solvation of the nitroxide.

5.
Proc Natl Acad Sci U S A ; 117(5): 2441-2448, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964841

RESUMO

Nanobodies are emerging tools in a variety of fields such as structural biology, cell imaging, and drug discovery. Here we pioneer the use of their spin-labeled variants as reporters of conformational dynamics of membrane proteins using DEER spectroscopy. At the example of the bacterial ABC transporter TM287/288, we show that two gadolinium-labeled nanobodies allow us to quantify, via analysis of the modulation depth of DEER traces, the fraction of transporters adopting the outward-facing state under different experimental conditions. Additionally, we quantitatively follow the interconversion from the outward- to the inward-facing state in the conformational ensemble under ATP turnover conditions. We finally show that the specificity of the nanobodies for the target protein allows the direct attainment of structural information on the wild-type TM287/288 expressed in cellular membranes without the need to purify or label the investigated membrane protein.


Assuntos
Membrana Celular/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas de Membrana/química , Anticorpos de Domínio Único/química , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Materiais Biocompatíveis , Membrana Celular/metabolismo , Gadolínio/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Conformação Proteica , Anticorpos de Domínio Único/metabolismo , Marcadores de Spin
6.
Nature ; 538(7623): 60-65, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27654919

RESUMO

In Gram-negative bacteria, outer membrane transporters import nutrients by coupling to an inner membrane protein complex called the Ton complex. The Ton complex consists of TonB, ExbB, and ExbD, and uses the proton motive force at the inner membrane to transduce energy to the outer membrane via TonB. Here, we structurally characterize the Ton complex from Escherichia coli using X-ray crystallography, electron microscopy, double electron-electron resonance (DEER) spectroscopy, and crosslinking. Our results reveal a stoichiometry consisting of a pentamer of ExbB, a dimer of ExbD, and at least one TonB. Electrophysiology studies show that the Ton subcomplex forms pH-sensitive cation-selective channels and provide insight into the mechanism by which it may harness the proton motive force to produce energy.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Força Próton-Motriz , Cristalografia por Raios X , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Concentração de Íons de Hidrogênio , Proteínas de Membrana/ultraestrutura , Complexos Multiproteicos/ultraestrutura
7.
Mol Cell ; 56(4): 496-505, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25458844

RESUMO

Bax plays a central role in the mitochondrial pathway of apoptosis. Upon activation, cytosolic Bax monomers oligomerize on the surface of mitochondria and change conformation concertedly to punch holes into the outer membrane. The subsequent release of cytochrome c initiates cell death. However, the structure of membrane-inserted Bax and its mechanism of action remain largely unknown. Here, we propose a 3D model of active Bax at the membrane based on double electron-electron resonance (DEER) spectroscopy in liposomes and isolated mitochondria. We show that active Bax is organized at the membrane as assemblies of dimers. In addition to a stable dimerization domain, each monomer contains a more flexible piercing domain involved in interdimer interactions and pore formation. The most important structural change during Bax activation is the opening of the hairpin formed by helices 5 and 6, which adopts a clamp-like conformation central to the mechanism of mitochondrial permeabilization.


Assuntos
Membrana Celular/química , Proteína X Associada a bcl-2/química , Animais , Camundongos , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
J Am Chem Soc ; 143(43): 17875-17890, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34664948

RESUMO

Distance distribution information obtained by pulsed dipolar EPR spectroscopy provides an important contribution to many studies in structural biology. Increasingly, such information is used in integrative structural modeling, where it delivers unique restraints on the width of conformational ensembles. In order to ensure reliability of the structural models and of biological conclusions, we herein define quality standards for sample preparation and characterization, for measurements of distributed dipole-dipole couplings between paramagnetic labels, for conversion of the primary time-domain data into distance distributions, for interpreting these distributions, and for reporting results. These guidelines are substantiated by a multi-laboratory benchmark study and by analysis of data sets with known distance distribution ground truth. The study and the guidelines focus on proteins labeled with nitroxides and on double electron-electron resonance (DEER aka PELDOR) measurements and provide suggestions on how to proceed analogously in other cases.


Assuntos
Óxidos N-Cíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica/normas , Proteínas/química , Marcadores de Spin , Benchmarking , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Reprodutibilidade dos Testes
9.
J Biol Chem ; 292(5): 1705-1723, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27974466

RESUMO

Type III secretion systems are complex nanomachines used for injection of proteins from Gram-negative bacteria into eukaryotic cells. Although they are assembled when the environmental conditions are appropriate, they only start secreting upon contact with a host cell. Secretion is hierarchical. First, the pore-forming translocators are released. Second, effector proteins are injected. Hierarchy between these protein classes is mediated by a conserved gatekeeper protein, MxiC, in Shigella As its molecular mechanism of action is still poorly understood, we used its structure to guide site-directed mutagenesis and to dissect its function. We identified mutants predominantly affecting all known features of MxiC regulation as follows: secretion of translocators, MxiC and/or effectors. Using molecular genetics, we then mapped at which point in the regulatory cascade the mutants were affected. Analysis of some of these mutants led us to a set of electron paramagnetic resonance experiments that provide evidence that MxiC interacts directly with IpaD. We suggest how this interaction regulates a switch in its conformation that is key to its functions.


Assuntos
Sistemas de Secreção Bacterianos/metabolismo , Shigella flexneri/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Mutação , Shigella flexneri/genética
10.
J Am Chem Soc ; 140(13): 4543-4551, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29547697

RESUMO

ATP-binding cassette (ABC) transporters are ATP-driven molecular machines, in which ATP binding and hydrolysis in the nucleotide-binding domains (NBDs) is chemomechanically coupled to large-scale, alternating access conformational changes in the transmembrane domains (TMDs), ultimately leading to the translocation of substrates across biological membranes. The precise nature of the structural dynamics behind the large-scale conformational transition as well as the coupling of NBD and TMD motions is still unresolved. In this work, we combine all-atom molecular dynamics (MD) simulations with electron paramagnetic resonance (EPR) spectroscopy to unravel the atomic-level mechanism of the dynamic conformational transitions underlying the functional working cycle of the heterodimeric ABC exporter TM287/288. Extensive multimicrosecond simulations in an explicit membrane/water environment show how in response to ATP binding, TM287/288 undergoes spontaneous conformational transitions from the inward-facing (IF) state via an occluded (Occ) intermediate to an outward-facing (OF) state. The latter two states have thus far not been characterized at atomic level. ATP-induced tightening of the NBD dimer involves closing and reorientation of the two NBD monomers concomitant with a closure of the intracellular TMD gate, which leads to the occluded state. Subsequently, opening at the extracellular TMD gate yields the OF conformer. The obtained mechanism imposes NBD-TMD coupling via a tight orchestration of conformational transitions, between both the two domains and also within the TMDs, ensuring that the cytoplasmic and periplasmic gate regions are never open simultaneously.

11.
Proc Natl Acad Sci U S A ; 111(30): 11025-30, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25030449

RESUMO

ATP binding cassette (ABC) transporters mediate vital transport processes in every living cell. ATP hydrolysis, which fuels transport, displays positive cooperativity in numerous ABC transporters. In particular, heterodimeric ABC exporters exhibit pronounced allosteric coupling between a catalytically impaired degenerate site, where nucleotides bind tightly, and a consensus site, at which ATP is hydrolyzed in every transport cycle. Whereas the functional phenomenon of cooperativity is well described, its structural basis remains poorly understood. Here, we present the apo structure of the heterodimeric ABC exporter TM287/288 and compare it to the previously solved structure with adenosine 5'-(ß,γ-imido)triphosphate (AMP-PNP) bound at the degenerate site. In contrast to other ABC exporter structures, the nucleotide binding domains (NBDs) of TM287/288 remain in molecular contact even in the absence of nucleotides, and the arrangement of the transmembrane domains (TMDs) is not influenced by AMP-PNP binding, a notion confirmed by double electron-electron resonance (DEER) measurements. Nucleotide binding at the degenerate site results in structural rearrangements, which are transmitted to the consensus site via two D-loops located at the NBD interface. These loops owe their name from a highly conserved aspartate and are directly connected to the catalytically important Walker B motif. The D-loop at the degenerate site ties the NBDs together even in the absence of nucleotides and substitution of its aspartate by alanine is well-tolerated. By contrast, the D-loop of the consensus site is flexible and the aspartate to alanine mutation and conformational restriction by cross-linking strongly reduces ATP hydrolysis and substrate transport.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Lactococcus lactis/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/fisiologia , Sítio Alostérico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico Ativo/fisiologia , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
Biochemistry ; 55(38): 5442-52, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27571040

RESUMO

Enzyme IIA(Glc) (EIIA(Glc)) of the phosphoenolpyruvate phosphotransferase system for the uptake of glucose in Escherichia coli and Salmonella inhibits the maltose ATP-binding cassette transporter (MalE-FGK2) by interaction with the nucleotide-binding and -hydrolyzing subunit MalK, a process termed inducer exclusion. We have investigated binding of EIIA(Glc) to the MalK dimer by cysteine cross-linking in proteoliposomes. The results prove that the binding site I of EIIA(Glc) is contacting the N-terminal subdomain of MalK while the binding site II is relatively close to the C-terminal (regulatory) subdomain, in agreement with a crystal structure [ Chen , S. , Oldham , M. L. , Davidson , A. L. , and Chen , J. ( 2013 ) Nature 499 , 364 - 368 ]. Moreover, EIIA(Glc) was found to bind to the MalK dimer regardless of its conformational state. Deletion of the amphipathic N-terminal peptide of EIIA(Glc), which is required for inhibition, reduced formation of cross-linked products. Using a spin-labeled transporter variant and EPR spectroscopy, we demonstrate that EIIA(Glc) arrests the transport cycle by inhibiting the ATP-dependent closure of the MalK dimer.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Maltose/metabolismo , Dimerização , Mutagênese Sítio-Dirigida , Ligação Proteica
13.
J Struct Biol ; 195(1): 62-71, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129417

RESUMO

Structure determination remains a challenge for many biologically important proteins. In particular, proteins that adopt multiple conformations often evade crystallization in all biologically relevant states. Although computational de novo protein folding approaches often sample biologically relevant conformations, the selection of the most accurate model for different functional states remains a formidable challenge, in particular, for proteins with more than about 150 residues. Electron paramagnetic resonance (EPR) spectroscopy can obtain limited structural information for proteins in well-defined biological states and thereby assist in selecting biologically relevant conformations. The present study demonstrates that de novo folding methods are able to accurately sample the folds of 192-residue long soluble monomeric Bcl-2-associated X protein (BAX). The tertiary structures of the monomeric and homodimeric forms of BAX were predicted using the primary structure as well as 25 and 11 EPR distance restraints, respectively. The predicted models were subsequently compared to respective NMR/X-ray structures of BAX. EPR restraints improve the protein-size normalized root-mean-square-deviation (RMSD100) of the most accurate models with respect to the NMR/crystal structure from 5.9Å to 3.9Å and from 5.7Å to 3.3Å, respectively. Additionally, the model discrimination is improved, which is demonstrated by an improvement of the enrichment from 5% to 15% and from 13% to 21%, respectively.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Modelos Moleculares , Dobramento de Proteína , Proteína X Associada a bcl-2/química , Algoritmos , Sequência de Aminoácidos , Animais , Humanos , Estrutura Molecular , Conformação Proteica , Multimerização Proteica
14.
Proc Natl Acad Sci U S A ; 110(14): 5492-7, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23509285

RESUMO

ATP-binding cassette (ABC) transporters couple the translocation of solutes across membranes to ATP hydrolysis. Crystal structures of the Escherichia coli maltose importer (MalFGK2) in complex with its substrate binding protein (MalE) provided unprecedented insights in the mechanism of substrate translocation, leaving the MalE-transporter interactions still poorly understood. Using pulsed EPR and cross-linking methods we investigated the effects of maltose and MalE on complex formation and correlated motions of the MalK2 nucleotide-binding domains (NBDs). We found that both substrate-free (open) and liganded (closed) MalE interact with the transporter with similar affinity in all nucleotide states. In the apo-state, binding of open MalE occurs via the N-lobe, leaving the C-lobe disordered, but upon maltose binding, closed MalE associates tighter to the transporter. In both cases the NBDs remain open. In the presence of ATP, the transporter binds both substrate-free and liganded MalE, both inducing the outward-facing conformation trapped in the crystal with open MalE at the periplasmic side and NBDs tightly closed. In contrast to ATP, ADP-Mg(2+) alone is sufficient to induce a semiopen conformation in the NBDs. In this nucleotide-driven state, the transporter binds both open and closed MalE with slightly different periplasmic configurations. We also found that dissociation of MalE is not a required step for substrate translocation since a supercomplex with MalE cross-linked to MalG retains the ability to hydrolyze ATP and to transport maltose. These features of MalE-MalFGK2 interactions highlight the conformational plasticity of the maltose importer, providing insights into the ATPase stimulation by unliganded MalE.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Escherichia coli/química , Maltose/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Proteínas Periplásmicas de Ligação/química , Conformação Proteica , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cristalografia por Raios X , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Marcadores de Spin
15.
J Biol Chem ; 289(34): 23482-503, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-24958726

RESUMO

The solution NMR structure of the α-helical integral membrane protein YgaP from Escherichia coli in mixed 1,2-diheptanoyl-sn-glycerol-3-phosphocholine/1-myristoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) micelles is presented. In these micelles, YgaP forms a homodimer with the two transmembrane helices being the dimer interface, whereas the N-terminal cytoplasmic domain includes a rhodanese-fold in accordance to its sequence homology to the rhodanese family of sulfurtransferases. The enzymatic sulfur transfer activity of full-length YgaP as well as of the N-terminal rhodanese domain only was investigated performing a series of titrations with sodium thiosulfate and potassium cyanide monitored by NMR and EPR. The data indicate the thiosulfate concentration-dependent addition of several sulfur atoms to the catalytic Cys-63, which process can be reversed by the addition of potassium cyanide. The catalytic reaction induces thereby conformational changes within the rhodanese domain, as well as on the transmembrane α-helices of YgaP. These results provide insights into a potential mechanism of YgaP during the catalytic thiosulfate activity in vivo.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiologia , Escherichia coli/química , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Ressonância Magnética Nuclear Biomolecular/métodos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Tiossulfato Sulfurtransferase/química
16.
J Biol Chem ; 289(6): 3176-85, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24362024

RESUMO

Double electron-electron resonance is used here to investigate intermediates of the transport cycle of the Escherichia coli vitamin B12 ATP-binding cassette importer BtuCD-F. Previously, we showed the ATP-induced opening of the cytoplasmic gate I in TM5 helices, later confirmed by the AMP-PNP-bound BtuCD-F crystal structure. Here, other key residues are analyzed in TM10 helices (positions 307 and 322) and in the cytoplasmic gate II, i.e. the loop between TM2 and TM3 (positions 82 and 85). Without BtuF, binding of ATP induces detectable changes at positions 307 and 85 in BtuCD in liposomes. Together with BtuF, ATP triggers the closure of the cytoplasmic gate II in liposomes (reported by both positions 82 and 85). This forms a sealed cavity in the translocation channel in agreement with the AMP-PNP·BtuCD-F x-ray structure. When vitamin B12 and AMP-PNP are simultaneously present, the extent of complex formation is reduced, but the short 82-82 interspin distance detected indicates that the substrate does not affect the closed conformation of this gate. The existence of the BtuCD-F complex under these conditions is verified with spectroscopically orthogonal nitroxide and Gd(III)-based labels. The cytoplasmic gate II remains closed also in the vanadate-trapped state, but it reopens in the ADP-bound state of the complex. Therefore, we suggest that the substrate likely trapped in ATP·BtuCD-F can be released after ATP hydrolysis but before the occluded ADP-bound conformation is reached.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Periplásmicas de Ligação/química , Vitamina B 12/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrólise , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Vitamina B 12/genética , Vitamina B 12/metabolismo
17.
Angew Chem Int Ed Engl ; 54(21): 6196-9, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25826642

RESUMO

Membrane proteins may be influenced by the environment, and they may be unstable in detergents or fail to crystallize. As a result, approaches to characterize structures in a native environment are highly desirable. Here, we report a novel general strategy for precise distance measurements on outer membrane proteins in whole Escherichia coli cells and isolated outer membranes. The cobalamin transporter BtuB was overexpressed and spin-labeled in whole cells and outer membranes and interspin distances were measured to a spin-labeled cobalamin using pulse EPR spectroscopy. A comparative analysis of the data reveals a similar interspin distance between whole cells, outer membranes, and synthetic vesicles. This approach provides an elegant way to study conformational changes or protein-protein/ligand interactions at surface-exposed sites of membrane protein complexes in whole cells and native membranes, and provides a method to validate outer membrane protein structures in their native environment.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Modelos Moleculares
18.
Biochim Biophys Acta ; 1828(2): 510-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23036933

RESUMO

Lipid peroxidation plays a key role in the alteration of cell membrane's properties. Here we used as model systems multilamellar vesicles (MLVs) made of the first two products in the oxidative cascade of linoleoyl lecithin, namely 1-palmitoyl-2-(13-hydroperoxy-9,11-octadecanedienoyl)-lecithin (HpPLPC) and 1-palmitoyl-2-(13-hydroxy-9,11-octadecanedienoyl)-lecithin (OHPLPC), exhibiting a hydroperoxide or a hydroxy group at position 13, respectively. The two oxidized lipids were used either pure or in a 1:1 molar ratio mixture with untreated 1-palmitoyl-2-linoleoyl-lecithin (PLPC). The model membranes were doped with spin-labeled lipids to study bilayer alterations by electron paramagnetic resonance (EPR) spectroscopy. Two different spin-labeled lipids were used, bearing the doxyl ring at position (n) 5 or 16: γ-palmitoyl-ß-(n-doxylstearoyl)-lecithin (n-DSPPC) and n-doxylstearic acid (n-DSA). Small changes in the acyl chain order in the sub-polar region and at the methyl-terminal induced by lipid peroxidation were detected by X-band EPR. Concomitantly, the polarity and proticity of the membrane bilayer in those regions were investigated at W band in frozen samples. Analysis of the g(xx) and A(zz) parameters revealed that OHPLPC, but mostly HpPLPC, induced a measurable increase in polarity and H-bonding propensity in the central region of the bilayer. Molecular dynamics simulation performed on 16-DSA in the PLPC-HpPLPC bilayer revealed that water molecules are statistically favored with respect to the hydroperoxide groups to interact with the nitroxide at the methyl-terminal, confirming that the H-bonds experimentally observed are due to increased water penetration in the bilayer. The EPR and MD data on model membranes demonstrate that cell membrane damage by oxidative stress cause alteration of water penetration in the bilayer.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Lecitinas/química , Bicamadas Lipídicas/química , Peroxidação de Lipídeos , Lipídeos/química , Água/química , Ligação de Hidrogênio , Membranas Artificiais , Modelos Químicos , Simulação de Dinâmica Molecular , Oxigênio/química , Fosfatidilcolinas/química , Fosfolipídeos/química
19.
Proc Natl Acad Sci U S A ; 108(4): 1349-54, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21205905

RESUMO

The ATP-binding cassette transporter associated with antigen processing (TAP) plays a key role in the adaptive immune defense against infected or malignantly transformed cells by translocating proteasomal degradation products into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. The broad substrate spectrum of TAP, rendering peptides from 8 to 40 residues, including even branched or modified molecules, suggests an unforeseen structural flexibility of the substrate-binding pocket. Here we used EPR spectroscopy to reveal conformational details of the bound peptides. Side-chain dynamics and environmental polarity were derived from covalently attached 2,2,5,5-tetramethylpyrrolidine-1-oxyl spin probes, whereas 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid spin-labeled peptides were used to detect backbone properties. Dependent on the spin probe's position, striking differences in affinity, dynamics, and polarity were found. The side-chains' mobility was strongly restricted at the ends of the peptide, whereas the central region was flexible, suggesting a central peptide bulge. In the end, double electron electron resonance allowed the determination of intrapeptide distances in doubly labeled peptides bound to TAP. Simulations based on a rotamer library led to the conclusion that peptides bind to TAP in an extended kinked structure, analogous to those bound to MHC class I proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Peptídeos/química , Conformação Proteica , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Cinética , Dados de Sequência Molecular , Biblioteca de Peptídeos , Peptídeos/metabolismo , Ligação Proteica , Marcadores de Spin , Spodoptera , Temperatura , Água/química
20.
J Phys Chem Lett ; 15(15): 4047-4055, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38580324

RESUMO

Liquid-liquid phase separation (LLPS) plays a key role in the compartmentalization of cells via the formation of biomolecular condensates. Here, we combined atomistic molecular dynamics (MD) simulations and terahertz (THz) spectroscopy to determine the solvent entropy contribution to the formation of condensates of the human eye lens protein γD-Crystallin. The MD simulations reveal an entropy tug-of-war between water molecules that are released from the protein droplets and those that are retained within the condensates, two categories of water molecules that were also assigned spectroscopically. A recently developed THz-calorimetry method enables quantitative comparison of the experimental and computational entropy changes of the released water molecules. The strong correlation mutually validates the two approaches and opens the way to a detailed atomic-level understanding of the different driving forces underlying the LLPS.


Assuntos
Separação de Fases , Água , Humanos , Solventes , Entropia , Calorimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA