Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genes Brain Behav ; 15(5): 491-502, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27108663

RESUMO

Mutations in the X-linked cyclin-dependent kinase-like 5 gene (CDKL5) are associated to severe neurodevelopmental alterations including motor symptoms. In order to elucidate the neurobiological substrate of motor symptoms in CDKL5 syndrome, we investigated the motor function, GABA and glutamate pathways in the cerebellum of CDKL5 knockout female mice. Behavioural data indicate that CDKL5-KO mice displayed impaired motor coordination on the Rotarod test, and altered steps, as measured by the gait analysis using the CatWalk test. A higher reduction in spontaneous GABA efflux, than that in glutamate, was observed in CDKL5-KO mouse cerebellar synaptosomes, leading to a significant increase of spontaneous glutamate/GABA efflux ratio in these animals. On the contrary, there were no differences between groups in K(+) -evoked GABA and glutamate efflux. The anatomical analysis of cerebellar excitatory and inhibitory pathways showed a selective defect of the GABA-related marker GAD67 in the molecular layer in CDKL5-KO mice, while the glutamatergic marker VGLUT1 was unchanged in the same area. Fine cerebellar structural abnormalities such as a reduction of the inhibitory basket 'net' estimated volume and an increase of the pinceau estimated volume were also observed in CDKL5-KO mice. Finally, the BDNF mRNA expression level in the cerebellum, but not in the hippocampus, was reduced compared with WT animals. These data suggest that CDKL5 deletion during development more markedly impairs the establishment of a correct GABAergic cerebellar network than that of glutamatergic one, leading to the behavioural symptoms associated with CDKL5 mutation.


Assuntos
Cerebelo/metabolismo , Locomoção , Inibição Neural , Proteínas Serina-Treonina Quinases/metabolismo , Transmissão Sináptica , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cerebelo/crescimento & desenvolvimento , Cerebelo/fisiologia , Feminino , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sinaptossomos/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
2.
Neuropharmacology ; 109: 254-269, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27346209

RESUMO

It is well known that an impairment of learning and memory function is one of the major physiological effects caused by natural or synthetic cannabinoid consumption in rodents, nonhuman primates and in humans. JWH-018 and its halogenated derivatives (JWH-018-Cl and JWH-018-Br) are synthetic CB1/CB2 cannabinoid agonists, illegally marketed as "Spice" and "herbal blend" for their Cannabis-like psychoactive effects. In the present study the effects of acute exposure to JWH-018, JWH-018-Cl, JWH-018-Br (JWH-018-R compounds) and Δ(9)-THC (for comparison) on Novel Object Recognition test (NOR) has been investigated in mice. Moreover, to better characterize the effects of JWH-018-R compounds on memory function, in vitro electrophysiological and neurochemical studies in hippocampal preparations have been performed. JWH-018, JWH-018-Cl and JWH-018-Br dose-dependently impaired both short- and long-memory retention in mice (respectively 2 and 24 h after training session). Their effects resulted more potent respect to that evoked by Δ(9)-THC. Moreover, in vitro studies showed as JWH-018-R compounds negatively affected electrically evoked synaptic transmission, LTP and aminoacid (glutamate and GABA) release in hippocampal slices. Behavioral, electrophysiological and neurochemical effects were fully prevented by CB1 receptor antagonist AM251 pretreatment, suggesting a CB1 receptor involvement. These data support the hypothesis that synthetic JWH-018-R compounds, as Δ(9)-THC, impair cognitive function in mice by interfering with hippocampal synaptic transmission and memory mechanisms. This data outline the danger that the use and/or abuse of these synthetic cannabinoids may represent for the cognitive process in human consumer.


Assuntos
Fenômenos Eletrofisiológicos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Indóis/farmacologia , Naftalenos/farmacologia , Reconhecimento Psicológico/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos/fisiologia , Halogenação , Hipocampo/química , Hipocampo/fisiologia , Indóis/química , Masculino , Camundongos , Camundongos Endogâmicos ICR , Naftalenos/química , Técnicas de Cultura de Órgãos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/fisiologia , Reconhecimento Psicológico/fisiologia
3.
Curr Med Chem ; 20(27): 3339-57, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23862615

RESUMO

The present article attempts to provide, on the basis of data emerging from studies carried out in our laboratories, a summary of the chemical and pharmacological properties of the new compound N-[(4-trifluoromethyl)benzyl]4- methoxybutyramide (GET73). Particular emphasis is given to findings obtained in vivo and in vitro suggesting that an allosteric modulation of metabotropic glutamate receptor 5 (mGlu5 receptor) by GET73 may represent the mechanism underlying the effects of the compound produced on rat hippocampal glutamate and GABA transmission. Furthermore, behavioural findings demonstrating how this new compound reduces alcohol intake, displays anxiolytic properties, and influences spatial memory in rats are also summarized. Since mGlu5 receptors play an important role in regulating several central actions of drugs of abuse, and the hippocampus is a crucial brain area involved in addiction, anxiety, and spatial memory, a possible link between mGlu5 receptor allosteric modulation and the profiles of action of GET73 is proposed, although to date no studies have yet explored GET73 binding at the mGlu5 receptor orthosteric and/or allosteric sites. Following a brief overview of glutamatergic neurotransmission, mGlu receptor structures and activation mechanisms, the general properties of mGlu5 receptor and its allosteric modulators are described in the first part of the review.


Assuntos
Anilidas/farmacologia , Hipocampo/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Consumo de Bebidas Alcoólicas , Regulação Alostérica , Anilidas/síntese química , Anilidas/química , Animais , Ansiolíticos/síntese química , Ansiolíticos/química , Ansiolíticos/farmacologia , Hipocampo/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/química , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA