Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 90(6): 2838-48, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26719259

RESUMO

UNLABELLED: The burden of infection with seasonal influenza viruses is significant. Each year is typically characterized by the dominance of one (sub)type or lineage of influenza A or B virus, respectively. The incidence of disease varies annually, and while this may be attributed to a particular virus strain or subtype, the impacts of prior immunity, population differences, and variations in clinical assessment are also important. To improve our understanding of the impacts of seasonal influenza viruses, we directly compared clinical symptoms, virus shedding, and expression of cytokines, chemokines, and immune mediators in the upper respiratory tract (URT) of ferrets infected with contemporary A(H1N1)pdm09, A(H3N2), or influenza B virus. Gene expression in the lower respiratory tract (LRT) was also assessed. Clinical symptoms were minimal. Overall cytokine/chemokine profiles in the URT were consistent in pattern and magnitude between animals infected with influenza A and B viruses, and peak expression levels of interleukin-1α (IL-1α), IL-1ß, IL-6, IL-12p40, alpha interferon (IFN-α), IFN-ß, and tumor necrosis factor alpha (TNF-α) mRNAs correlated with peak levels of viral shedding. MCP1 and IFN-γ were expressed after the virus peak. Granzymes A and B and IL-10 reached peak expression as the virus was cleared and seroconversion was detected. Cytokine/chemokine gene expression in the LRT following A(H1N1)pdm09 virus infection reflected the observations seen for the URT but was delayed 2 or 3 days, as was virus replication. These data indicate that disease severities and localized immune responses following infection with seasonal influenza A and B viruses are similar, suggesting that other factors are likely to modulate the incidence and impact of seasonal influenza. IMPORTANCE: Both influenza A and B viruses cocirculate in the human population, and annual influenza seasons are typically dominated by an influenza A virus subtype or an influenza B virus lineage. Surveillance data indicate that the burden of disease is higher in some seasons, yet it is unclear whether this is due to specific virus strains or to other factors, such as cross-reactive immunity or clinical definitions of influenza. We directly compared disease severities and localized inflammatory responses to different seasonal influenza virus strains, including the 2009 pandemic strain, in healthy naive ferrets. We found that the disease severities and the cytokine and chemokine responses were similar irrespective of the seasonal strain or the location of the infection in the respiratory tract. This suggests that factors other than the immune response to a particular virus (sub)type contribute to the variable impact of influenza virus infection in a population.


Assuntos
Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Sistema Respiratório/imunologia , Sistema Respiratório/patologia , Animais , Temperatura Corporal , Peso Corporal , Citocinas/análise , Modelos Animais de Doenças , Feminino , Furões , Perfilação da Expressão Gênica , Humanos , Masculino , Infecções por Orthomyxoviridae/virologia , Sistema Respiratório/virologia , Índice de Gravidade de Doença , Carga Viral , Eliminação de Partículas Virais
2.
Dev Comp Immunol ; 55: 32-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26472619

RESUMO

While the ferret is a valuable animal model for a number of human viral infections, such as influenza, Hendra and Nipah, evaluating the cellular immune response following infection has been hampered by the lack of a number of species-specific immunological reagents. Interleukin 2 (IL-2) is one such key cytokine. Ferret recombinant IL-2 incorporating a C-terminal histidine tag was expressed and purified and the three-dimensional structure solved and refined at 1.89 Šby X-ray crystallography, which represents the highest resolution and first non-human IL-2 structure. While ferret IL-2 displays the classic cytokine fold of the four-helix bundle structure, conformational flexibility was observed at the second helix and its neighbouring region in the bundle, which may result in the disruption of the spatial arrangement of residues involved in receptor binding interactions, implicating subtle differences between ferret and human IL-2 when initiating biological functions. Ferret recombinant IL-2 stimulated the proliferation of ferret lymph node cells and induced the expression of mRNA for IFN-γ and Granzyme A.


Assuntos
Furões/imunologia , Interleucina-2/metabolismo , Linfonodos/imunologia , Viroses/imunologia , Animais , Proliferação de Células , Células Cultivadas , Cristalografia por Raios X , Granzimas/genética , Granzimas/metabolismo , Humanos , Interferon gama/metabolismo , Interleucina-2/genética , Linfonodos/patologia , Conformação Proteica , Proteínas Recombinantes/genética , Especificidade da Espécie , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA