Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
EMBO J ; 41(21): e112107, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36125182

RESUMO

Over the course of evolution, the centrosome function has been conserved in most eukaryotes, but its core architecture has evolved differently in some clades, with the presence of centrioles in humans and a spindle pole body (SPB) in yeast. Similarly, the composition of these two core elements has diverged, with the exception of Centrin and SFI1, which form a complex in yeast to initiate SPB duplication. However, it remains unclear whether this complex exists at centrioles and whether its function has been conserved. Here, using expansion microscopy, we demonstrate that human SFI1 is a centriolar protein that associates with a pool of Centrin at the distal end of the centriole. We also find that both proteins are recruited early during procentriole assembly and that depletion of SFI1 results in the loss of the distal pool of Centrin, without altering centriole duplication. Instead, we show that SFI1/Centrin complex is essential for centriolar architecture, CEP164 distribution, and CP110 removal during ciliogenesis. Together, our work reveals a conserved SFI1/Centrin module displaying divergent functions between mammals and yeast.


Assuntos
Proteínas de Ligação ao Cálcio , Proteínas de Ciclo Celular , Centríolos , Animais , Humanos , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Corpos Polares do Fuso/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
2.
EMBO Rep ; 19(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30224411

RESUMO

Here, we address the regulation of microtubule nucleation during interphase by genetically ablating one, or two, of three major mammalian γ-TuRC-binding factors namely pericentrin, CDK5Rap2, and AKAP450. Unexpectedly, we find that while all of them participate in microtubule nucleation at the Golgi apparatus, they only modestly contribute at the centrosome where CEP192 has a more predominant function. We also show that inhibiting microtubule nucleation at the Golgi does not affect centrosomal activity, whereas manipulating the number of centrosomes with centrinone modifies microtubule nucleation activity of the Golgi apparatus. In centrosome-free cells, inhibition of Golgi-based microtubule nucleation triggers pericentrin-dependent formation of cytoplasmic-nucleating structures. Further depletion of pericentrin under these conditions leads to the generation of individual microtubules in a γ-tubulin-dependent manner. In all cases, a conspicuous MT network forms. Strikingly, centrosome loss increases microtubule number independently of where they were growing from. Our results lead to an unexpected view of the interphase centrosome that would control microtubule network organization not only by nucleating microtubules, but also by modulating the activity of alternative microtubule-organizing centers.


Assuntos
Centrossomo/metabolismo , Interfase/fisiologia , Microtúbulos/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Antígenos/genética , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas do Citoesqueleto/genética , Técnicas de Inativação de Genes , Complexo de Golgi/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Microtúbulos/genética , Proteínas do Tecido Nervoso/genética , Tubulina (Proteína)/metabolismo
3.
Nat Rev Mol Cell Biol ; 9(11): 874-86, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18946476

RESUMO

In spite of conspicuous differences in their polarized architecture, swimming unicellular eukaryotes and migrating cells from metazoa display a conserved hierarchical interlocking of the main cellular compartments, in which the microtubule network has a dominant role. A microtubule array can organize the distribution of endomembranes owing to a cell-wide and polarized extension around a unique nucleus-associated structure. The nucleus-associated structure in animal cells contains a highly conserved organelle, the centriole or basal body. This organelle has a defined polarity that can be transmitted to the cell. Its conservative mode of duplication seems to be a core mechanism for the transmission of polarities through cell division.


Assuntos
Polaridade Celular , Organelas/metabolismo , Animais , Humanos , Leveduras
4.
Biol Cell ; 111(12): 294-307, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31621092

RESUMO

I have been invited by the board of the French Society of Cell Biology (SBCF) to write a text around my presentation in the Symposium 'A day at the Cell Centre', held at the Curie Institute on May 17, 2019, and organized by four of my former students, namely Juliette Azimzadeh, Nathalie Delgehyr, Matthieu Piel and Manuel Théry. I have to thank them warmly for the quality of the science during this day. It was also a moving day for me indeed to listen to so many figures in the field.


Assuntos
Biologia Celular/história , Centríolos/ultraestrutura , História do Século XX , História do Século XXI
5.
PLoS Biol ; 13(3): e1002087, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25764135

RESUMO

Epithelial morphogenesis involves a dramatic reorganisation of the microtubule cytoskeleton. How this complex process is controlled at the molecular level is still largely unknown. Here, we report that the centrosomal microtubule (MT)-binding protein CAP350 localises at adherens junctions in epithelial cells. By two-hybrid screening, we identified a direct interaction of CAP350 with the adhesion protein α-catenin that was further confirmed by co-immunoprecipitation experiments. Block of epithelial cadherin (E-cadherin)-mediated cell-cell adhesion or α-catenin depletion prevented CAP350 localisation at cell-cell junctions. Knocking down junction-located CAP350 inhibited the establishment of an apico-basal array of microtubules and impaired the acquisition of columnar shape in Madin-Darby canine kidney II (MDCKII) cells grown as polarised epithelia. Furthermore, MDCKII cystogenesis was also defective in junctional CAP350-depleted cells. CAP350-depleted MDCKII cysts were smaller and contained either multiple lumens or no lumen. Membrane polarity was not affected, but cortical microtubule bundles did not properly form. Our results indicate that CAP350 may act as an adaptor between adherens junctions and microtubules, thus regulating epithelial differentiation and contributing to the definition of cell architecture. We also uncover a central role of α-catenin in global cytoskeleton remodelling, in which it acts not only on actin but also on MT reorganisation during epithelial morphogenesis.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas dos Microtúbulos/genética , Morfogênese/genética , Proteínas Nucleares/genética , alfa Catenina/genética , Junções Aderentes/metabolismo , Junções Aderentes/ultraestrutura , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Linhagem Celular , Polaridade Celular , Forma Celular , Cães , Embrião não Mamífero , Células Epiteliais/citologia , Vetores Genéticos , Humanos , Lentivirus/genética , Células Madin Darby de Rim Canino , Proteínas dos Microtúbulos/antagonistas & inibidores , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Oryzias , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido , alfa Catenina/metabolismo
6.
EMBO J ; 28(8): 1016-28, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19242490

RESUMO

We report that microtubule (MT) nucleation at the Golgi apparatus requires AKAP450, a centrosomal gamma-TuRC-interacting protein that also forms a distinct network associated with the Golgi. Depletion of AKAP450 abolished MT nucleation at the Golgi, whereas depletion of the cis-Golgi protein GM130 led to the disorganisation of AKAP450 network and impairment of MT nucleation. Brefeldin-A treatment induced relocalisation of AKAP450 to ER exit sites and concomitant redistribution of MT nucleation capacity to the ER. AKAP450 specifically binds the cis-side of the Golgi in an MT-independent, GM130-dependent manner. Short AKAP450-dependent growing MTs are covered by CLASP2. Like for centrosome, dynein/dynactin complexes are necessary to anchor MTs growing from the Golgi. We further show that Golgi-associated AKAP450 has a role in cell migration rather than in cell polarisation of the centrosome-Golgi apparatus. We propose that the recruitment of AKAP450 on the Golgi membranes through GM130 allows centrosome-associated nucleating activity to extend to the Golgi, to control the assembly of subsets of MTs ensuring specific functions within the Golgi or for transporting specific cargos to the cell periphery.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Autoantígenos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Autoantígenos/genética , Brefeldina A/metabolismo , Linhagem Celular , Movimento Celular/fisiologia , Centrossomo/metabolismo , Proteínas do Citoesqueleto/genética , Complexo Dinactina , Dineínas/metabolismo , Retículo Endoplasmático/metabolismo , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Inibidores da Síntese de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Epitélio Pigmentado da Retina/citologia
7.
Nat Methods ; 7(7): 560-6, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20512144

RESUMO

We developed a computational imaging approach that describes the three-dimensional spatial organization of endomembranes from micromanipulation-normalized mammalian cells with probabilistic density maps. Applied to several well-known marker proteins, this approach revealed the average steady-state organization of early endosomes, multivesicular bodies or lysosomes, endoplasmic reticulum exit sites, the Golgi apparatus and Golgi-derived transport carriers in crossbow-shaped cells. The steady-state organization of each tested endomembranous population was well-defined, unique and in some cases depended on the cellular adhesion geometry. Density maps of all endomembrane populations became stable when pooling several tens of cells only and were reproducible in independent experiments, allowing construction of a standardized cell model. We detected subtle changes in steady-state organization induced by disruption of the cellular cytoskeleton, with statistical significance observed for just 20 cells. Thus, combining micropatterning with construction of endomembrane density maps allows the systematic study of intracellular trafficking determinants.


Assuntos
Processamento de Imagem Assistida por Computador , Membranas Intracelulares/fisiologia , Biomarcadores , Linhagem Celular , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/fisiologia , Inativação Gênica , Humanos , Membranas Intracelulares/efeitos dos fármacos , Nocodazol/farmacologia , Transporte Proteico , Reprodutibilidade dos Testes , Moduladores de Tubulina/farmacologia
8.
Curr Opin Cell Biol ; 18(6): 648-57, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17046223

RESUMO

The correlation between cell shape elongation and the orientation of the division axis described by early cell biologists is still used as a paradigm in developmental studies. However, analysis of early embryo development and tissue morphogenesis has highlighted the role of the spatial distribution of cortical cues able to guide spindle orientation. In vitro studies of cell division have revealed similar mechanisms. Recent data support the possibility that the orientation of cell division in mammalian cells is dominated by cell adhesion and the associated traction forces developed in interphase. Cell shape is a manifestation of these adhesive and tensional patterns. These patterns control the spatial distribution of cortical signals and thereby guide spindle orientation and daughter cell positioning. From these data, cell division appears to be a continuous transformation ensuring the maintenance of tissue mechanical integrity.


Assuntos
Divisão Celular/fisiologia , Polaridade Celular/fisiologia , Forma Celular/fisiologia , Animais , Adesão Celular/fisiologia , Citocinese/fisiologia , Humanos , Interfase/fisiologia , Proteínas dos Microfilamentos/metabolismo , Fuso Acromático/fisiologia , Resistência à Tração/fisiologia
9.
Nature ; 447(7143): 493-6, 2007 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-17495931

RESUMO

The architecture and adhesiveness of a cell microenvironment is a critical factor for the regulation of spindle orientation in vivo. Using a combination of theory and experiments, we have investigated spindle orientation in HeLa (human) cells. Here we show that spindle orientation can be understood as the result of the action of cortical force generators, which interact with spindle microtubules and are activated by cortical cues. We develop a simple physical description of this spindle mechanics, which allows us to calculate angular profiles of the torque acting on the spindle, as well as the angular distribution of spindle orientations. Our model accounts for the preferred spindle orientation and the shape of the full angular distribution of spindle orientations observed in a large variety of different cellular microenvironment geometries. It also correctly describes asymmetric spindle orientations, which are observed for certain distributions of cortical cues. We conclude that, on the basis of a few simple assumptions, we can provide a quantitative description of the spindle orientation of adherent cells.


Assuntos
Polaridade Celular , Fuso Acromático/química , Fuso Acromático/metabolismo , Adesão Celular , Sinais (Psicologia) , Fibronectinas/metabolismo , Células HeLa , Humanos , Microtúbulos/metabolismo
10.
Nat Cell Biol ; 7(10): 947-53, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16179950

RESUMO

The cell division axis determines the future positions of daughter cells and is therefore critical for cell fate. The positioning of the division axis has been mostly studied in systems such as embryos or yeasts, in which cell shape is well defined. In these cases, cell shape anisotropy and cell polarity affect spindle orientation. It remains unclear whether cell geometry or cortical cues are determinants for spindle orientation in mammalian cultured cells. The cell environment is composed of an extracellular matrix (ECM), which is connected to the intracellular actin cytoskeleton via transmembrane proteins. We used micro-contact printing to control the spatial distribution of the ECM on the substrate and demonstrated that it has a role in determining the orientation of the division axis of HeLa cells. On the basis of our analysis of the average distributions of actin-binding proteins in interphase and mitosis, we propose that the ECM controls the location of actin dynamics at the membrane, and thus the segregation of cortical components in interphase. This segregation is further maintained on the cortex of mitotic cells and used for spindle orientation.


Assuntos
Polaridade Celular/fisiologia , Matriz Extracelular/fisiologia , Actinas/fisiologia , Divisão Celular/fisiologia , Membrana Celular/fisiologia , Forma Celular/fisiologia , Células HeLa , Humanos , Fatores de Tempo
11.
Dev Dyn ; 240(3): 723-36, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21337470

RESUMO

We describe the localization of the golgin GMAP210 and the intraflagellar protein IFT88 in the Golgi of spermatids and the participation of these two proteins in the development of the acrosome-acroplaxome complex, the head-tail coupling apparatus (HTCA) and the spermatid tail. Immunocytochemical experiments show that GMAP210 predominates in the cis-Golgi, whereas IFT88 prevails in the trans-Golgi network. Both proteins colocalize in proacrosomal vesicles, along acrosome membranes, the HTCA and the developing tail. IFT88 persists in the acrosome-acroplaxome region of the sperm head, whereas GMAP210 is no longer seen there. Spermatids of the Ift88 mouse mutant display abnormal head shaping and are tail-less. GMAP210 is visualized in the Ift88 mutant during acrosome-acroplaxome biogenesis. However, GMAP210-stained vesicles, mitochondria and outer dense fiber material build up in the manchette region and fail to reach the abortive tail stump in the mutant. In vitro disruption of the spermatid Golgi and microtubules with Brefeldin-A and nocodazole blocks the progression of GMAP210- and IFT88-stained proacrosomal vesicles to the acrosome-acroplaxome complex but F-actin distribution in the acroplaxome is not affected. We provide the first evidence that IFT88 is present in the Golgi of spermatids, that the microtubule-associated golgin GMAP210 and IFT88 participate in acrosome, HTCA, and tail biogenesis, and that defective intramanchette transport of cargos disrupts spermatid tail development.


Assuntos
Acrossomo/metabolismo , Complexo de Golgi/metabolismo , Proteínas Nucleares/metabolismo , Espermátides/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Acrossomo/ultraestrutura , Actinas/metabolismo , Animais , Brefeldina A/farmacologia , Proteínas do Citoesqueleto , Técnica Indireta de Fluorescência para Anticorpo , Complexo de Golgi/ultraestrutura , Immunoblotting , Imuno-Histoquímica , Masculino , Camundongos , Microscopia Eletrônica , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Nocodazol/farmacologia , Proteínas Nucleares/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermátides/ultraestrutura , Proteínas Supressoras de Tumor/genética
12.
Curr Biol ; 18(22): 1748-53, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19026544

RESUMO

The cylindrical rod shape of the fission yeast Schizosaccharomyces pombe is organized and maintained by interactions between the microtubule, cell membrane, and actin cytoskeleton [1]. Mutations affecting any components in this pathway lead to bent, branched, or round cells [2]. In this context, the cytoskeleton controls cell polarity and thus dictates cell shape. Here, we use soft-lithography techniques to construct microfluidic channels to control cell shape. We show that when wild-type rod-shaped cells are physically forced to grow in a bent fashion, they will reorganize their cytoskeleton and redirect cell polarity to make new ectopic cell tips. Moreover, when bent or round mutant cells are physically forced to conform to the wild-type rod-shape, they will reverse their mutational phenotypes by reorganizing their cytoskeleton to maintain proper wild-type-like localization of microtubules, cell-membrane proteins, and actin. Our study provides direct evidence that the cytoskeleton controls cell polarity and cell shape and demonstrates that cell shape also controls the organization of the cytoskeleton in a feedback loop. We present a model of the feedback loop to explain how fission yeast maintain a rod shape and how perturbation of specific parameters of the loop can lead to different cell shapes.


Assuntos
Polaridade Celular/fisiologia , Forma Celular , Microtúbulos/fisiologia , Schizosaccharomyces/ultraestrutura , Crescimento Celular , Microfluídica , Microtúbulos/ultraestrutura , Modelos Biológicos , Morfogênese , Mutação , Fenótipo , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética
13.
Curr Opin Cell Biol ; 14(1): 25-34, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11792541

RESUMO

Centrosomes of animal cells and spindle pole bodies of fungi are the major microtubule nucleating centers. Recent studies indicate that their capacity to organize microtubule arrays rests on elaborate control of the anchoring and release of the nucleated microtubules. Although common molecular mechanisms are likely to be involved in both cases, the centrosome from animal cells shows considerable complexity and flexibility, which contrasts with the simple laminar organization of spindle pole bodies in fungi. The role of the centriole pair in controlling both the structural stability and the activity of the centrosome in animal cells is now becoming clearer. The potential use of the generational asymmetry of centrosomes or spindle pole bodies for controlling cell polarity is also a growing theme.


Assuntos
Centrossomo/química , Centrossomo/metabolismo , Microtúbulos/metabolismo , Animais , Ciclo Celular , Centríolos/fisiologia , Centríolos/ultraestrutura , Modelos Biológicos
14.
Curr Opin Cell Biol ; 15(1): 60-6, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12517705

RESUMO

In non-polarised mammalian cells, the Golgi apparatus is localised around the centrosome and actively maintained there. Microtubules and molecular motor activity are required for determining both the localisation and organisation of the Golgi apparatus. Other factors, however, also appear necessary for regulating both the static steady-state distribution of this organelle and its relationship with microtubule minus-end-anchoring activities of the centrosome. Several non-motor microtubule-binding proteins have now been found to be associated with the Golgi apparatus. Recent advances suggest that, in addition to important roles in cell motility, polarisation and differentiation, the interplay between Golgi apparatus and centrosome could participate in other physiological processes such as intracellular signalling, mitosis and apoptosis.


Assuntos
Centrossomo/metabolismo , Células Eucarióticas/metabolismo , Complexo de Golgi/metabolismo , Microtúbulos/metabolismo , Animais , Centrossomo/ultraestrutura , Células Eucarióticas/ultraestrutura , Complexo de Golgi/ultraestrutura , Humanos , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas Motores Moleculares/fisiologia , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia
15.
Trends Cell Biol ; 16(1): 5-10, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16325405

RESUMO

Tight regulation of the contractility of the actomyosin cortex is essential for proper cell locomotion and division. Enhanced contractility leads, for example, to aberrations in the positioning of the mitotic spindle or to anomalous migration modes that allow tumor cells to escape anti-dissemination treatments. Spherical membrane protrusions called blebs occasionally appear during cell migration, cell division or apoptosis. We have shown that the cortex ruptures at sites where actomyosin cortical contractility is increased, leading to the formation of blebs. Here, we propose that bleb formation, which releases cortical tension, can be used as a reporter of cortical contractility. We go on to analyze the implications of spontaneous cortical contractile behaviors on cell locomotion and division and we particularly emphasize that variations in actomyosin contractility can account for a variety of migration modes.


Assuntos
Actomiosina/análise , Actomiosina/fisiologia , Divisão Celular/fisiologia , Movimento Celular/fisiologia , Citoplasma/química , Actomiosina/ultraestrutura , Animais , Membrana Celular/química , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Polaridade Celular , Proteínas Contráteis/análise , Proteínas Contráteis/fisiologia , Proteínas Contráteis/ultraestrutura , Citocinese , Citoplasma/ultraestrutura , Proteínas do Citoesqueleto/análise , Proteínas do Citoesqueleto/fisiologia , Proteínas do Citoesqueleto/ultraestrutura , Citoesqueleto/química , Citoesqueleto/fisiologia , Citoesqueleto/ultraestrutura , Géis , Humanos
16.
J Cell Biol ; 174(6): 839-49, 2006 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-16954346

RESUMO

Tubulin-tyrosine ligase (TTL), the enzyme that catalyzes the addition of a C-terminal tyrosine residue to alpha-tubulin in the tubulin tyrosination cycle, is involved in tumor progression and has a vital role in neuronal organization. We show that in mammalian fibroblasts, cytoplasmic linker protein (CLIP) 170 and other microtubule plus-end tracking proteins comprising a cytoskeleton-associated protein glycine-rich (CAP-Gly) microtubule binding domain such as CLIP-115 and p150 Glued, localize to the ends of tyrosinated microtubules but not to the ends of detyrosinated microtubules. In vitro, the head domains of CLIP-170 and of p150 Glued bind more efficiently to tyrosinated microtubules than to detyrosinated polymers. In TTL-null fibroblasts, tubulin detyrosination and CAP-Gly protein mislocalization correlate with defects in both spindle positioning during mitosis and cell morphology during interphase. These results indicate that tubulin tyrosination regulates microtubule interactions with CAP-Gly microtubule plus-end tracking proteins and provide explanations for the involvement of TTL in tumor progression and in neuronal organization.


Assuntos
Fibroblastos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Animais , Células Cultivadas , Complexo Dinactina , Fibroblastos/ultraestrutura , Interfase/fisiologia , Camundongos , Microtúbulos/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Polímeros/metabolismo , Estrutura Terciária de Proteína/fisiologia , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
17.
Curr Opin Struct Biol ; 66: 199-206, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33338884

RESUMO

The centrosome, discovered near 1875, was named by Boveri when proposing the chromosomal theory of heredity. After a long eclipse, a considerable amount of molecular data has been accumulated on the centrosome and its biogenesis in the last 30 years, summarized regularly in excellent reviews. Major questions are still at stake in 2021 however, as we lack a comprehensive view of the centrosome functions. I will first try to see how progress towards a unified view of the role of centrosomes during evolution is possible, and then review recent data on only some of the many important questions raised by this organelle.


Assuntos
Centrossomo , Ciclo Celular
18.
Curr Biol ; 31(6): 1206-1220.e5, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33609453

RESUMO

The centrosome is the main organizer of microtubules and as such, its position is a key determinant of polarized cell functions. As the name says, the default position of the centrosome is considered to be the cell geometrical center. However, the mechanism regulating centrosome positioning is still unclear and often confused with the mechanism regulating the position of the nucleus to which it is linked. Here, we used enucleated cells plated on adhesive micropatterns to impose regular and precise geometrical conditions to centrosome-microtubule networks. Although frequently observed there, the equilibrium position of the centrosome is not systematically at the cell geometrical center and can be close to cell edge. Centrosome positioning appears to respond accurately to the architecture and anisotropy of the actin network, which constitutes, rather than cell shape, the actual spatial boundary conditions the microtubule network is sensitive to. We found that the contraction of the actin network defines a peripheral margin in which microtubules appear bent by compressive forces. The progressive disassembly of the actin network at distance from the cell edges defines an inner zone where actin bundles were absent, where microtubules were more radially organized and where dynein concentration was higher. We further showed that the production of dynein-based forces on microtubules places the centrosome at the center of this zone. In conclusion, the spatial distribution of cell adhesion and the production of contractile forces define the architecture of the actin network with respect to which the centrosome-microtubule network is centered.


Assuntos
Actinas , Centrossomo , Dineínas , Miosinas , Actinas/metabolismo , Centrossomo/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo
19.
Curr Biol ; 17(8): 694-9, 2007 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-17379524

RESUMO

Cell adhesion and motility depend strongly on the interactions between cells and extracellular matrix (ECM) substrates. When plated onto artificial adhesive surfaces, cells first flatten and deform extensively as they spread. At the molecular level, the interaction of membrane-based integrins with the ECM has been shown to initiate a complex cascade of signaling events [1], which subsequently triggers cellular morphological changes and results in the generation of contractile forces [2]. Here, we focus on the early stages of cell spreading and probe their dynamics by quantitative visualization and biochemical manipulation with a variety of cell types and adhesive surfaces, adhesion receptors, and cytoskeleton-altering drugs. We find that the dynamics of adhesion follows a universal power-law behavior. This is in sharp contrast with the common belief that spreading is regulated by either the diffusion of adhesion receptors toward the growing adhesive patch [3-5] or by actin polymerization [6-8]. To explain this, we propose a simple quantitative and predictive theory that models cells as viscous adhesive cortical shells enclosing a less viscous interior. Thus, although cell spreading is driven by well-identified biomolecular interactions, it is dynamically limited by its mesoscopic structure and material properties.


Assuntos
Movimento Celular/fisiologia , Microscopia de Interferência , Animais , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Citoesqueleto/fisiologia , Células HeLa , Humanos , Camundongos
20.
BMC Biol ; 7: 56, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19715559

RESUMO

BACKGROUND: The Golgi apparatus in mammals appears as a ribbon made up of interconnected stacks of flattened cisternae that is positioned close to the centrosome in a microtubule-dependent manner. How this organisation is achieved and retained is not well understood. GMAP210 is a long coiled-coil cis-Golgi associated protein that plays a role in maintaining Golgi ribbon integrity and position and contributes to the formation of the primary cilium. An amphipathic alpha-helix able to bind liposomes in vitro has been recently identified at the first 38 amino acids of the protein (amphipathic lipid-packing sensor motif), and an ARF1-binding domain (Grip-related Arf-binding domain) was found at the C-terminus. To which type of membranes these two GMAP210 regions bind in vivo and how this contributes to GMAP210 localisation and function remains to be investigated. RESULTS: By using truncated as well as chimeric mutants and videomicroscopy we found that both the N-terminus and the C-terminus of GMAP210 are targeted to the cis-Golgi in vivo. The ALPS motif was identified as the N-terminal binding motif and appeared concentrated in the periphery of Golgi elements and between Golgi stacks. On the contrary, the C-terminal domain appeared uniformly distributed in the cis-cisternae of the Golgi apparatus. Strikingly, the two ends of the protein also behave differently in response to the drug Brefeldin A. The N-terminal domain redistributed to the endoplasmic reticulum (ER) exit sites, as does the full-length protein, whereas the C-terminal domain rapidly dissociated from the Golgi apparatus to the cytosol. Mutants comprising the full-length protein but lacking one of the terminal motifs also associated with the cis-Golgi with distribution patterns similar to those of the corresponding terminal end whereas a mutant consisting in fused N- and C-terminal ends exhibits identical localisation as the endogenous protein. CONCLUSION: We conclude that the Golgi localisation of GMAP210 is the result of the combined action of the two N- and C-terminal domains that recognise different sub-regions of the cis-GA. Based on present and previous data, we propose a model in which GMAP210 would participate in homotypic fusion of cis-cisternae by anchoring the surface of cisternae via its C-terminus and projecting its distal N-terminus to bind the rims or to stabilise tubular structures connecting neighbouring cis-cisternae.


Assuntos
Complexo de Golgi/metabolismo , Proteínas Nucleares/metabolismo , Via Secretória/fisiologia , Sequência de Aminoácidos , Autoantígenos/metabolismo , Linhagem Celular , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Proteínas do Citoesqueleto , Citosol/metabolismo , Citosol/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Expressão Gênica , Complexo de Golgi/ultraestrutura , Humanos , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Microscopia de Vídeo , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/metabolismo , N-Acetil-Lactosamina Sintase/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , RNA Interferente Pequeno , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Epitélio Pigmentado da Retina , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA