Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 18(3): 447-58, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23893289

RESUMO

Helicase motif VI is a short arginine-rich motif within the NTPase/helicase domain of the non-structural protein 3 (NS3) of the hepatitis C virus (HCV). We previously demonstrated that it reduces the catalytic activity and intracellular shuttling of protein kinase C (PKC). Thus, NS3-mediated PKC inhibition may be involved in HCV-associated hepatocellular carcinoma (HCC). In this study, we expand on our earlier results, which were obtained in experiments with short fragments of NS3, to show for the first time that the catalytically active, longer C-terminal NTPase/helicase of NS3 acts as a potent PKC inhibitor in vitro. PKC inhibition assays with the NTPase-inactive mutant NS3h-D1316A revealed a mixed type kinetic inhibition pattern. A broad range of 11 PKC isotypes was tested and all of the PKC isotypes were inhibited with IC50-values in the low micromolar range. These findings were confirmed for the wild-type NTPase/helicase domain in a non-radiometric PKC inhibition assay with ATP regeneration to rule out any effect of ATP hydrolysis caused by its NTPase activity. PKCα was inhibited with a micromolar IC50 in this assay, which compares well with our result for NS3h-D1316A (IC50 = 0.7 µM). In summary, these results confirm that catalytically active NS3 NTPase/helicase can act in an analogous manner to shorter NS3 fragments as a pseudosubstrate inhibitor of PKC.


Assuntos
Trifosfato de Adenosina/metabolismo , Hepacivirus/enzimologia , Proteína Quinase C/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Biocatálise , Eletroforese em Gel de Poliacrilamida , Hepacivirus/genética , Hidrólise , Cinética , Modelos Moleculares , Mutação , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/genética , Nucleosídeo-Trifosfatase/metabolismo , Estrutura Terciária de Proteína , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
2.
Chaos ; 20(4): 043117, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21198087

RESUMO

Many neuronal systems and models display a certain class of mixed mode oscillations (MMOs) consisting of periods of small amplitude oscillations interspersed with spikes. Various models with different underlying mechanisms have been proposed to generate this type of behavior. Stochastic versions of these models can produce similarly looking time series, often with noise-driven mechanisms different from those of the deterministic models. We present a suite of measures which, when applied to the time series, serves to distinguish models and classify routes to producing MMOs, such as noise-induced oscillations or delay bifurcation. By focusing on the subthreshold oscillations, we analyze the interspike interval density, trends in the amplitude, and a coherence measure. We develop these measures on a biophysical model for stellate cells and a phenomenological FitzHugh-Nagumo-type model and apply them on related models. The analysis highlights the influence of model parameters and resets and return mechanisms in the context of a novel approach using noise level to distinguish model types and MMO mechanisms. Ultimately, we indicate how the suite of measures can be applied to experimental time series to reveal the underlying dynamical structure, while exploiting either the intrinsic noise of the system or tunable extrinsic noise.


Assuntos
Modelos Biológicos , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Fatores de Tempo
3.
Antivir Chem Chemother ; 18(2): 103-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17542155

RESUMO

In this report, we demonstrate the interaction of the non-structural protein 3 (NS3) of hepatitis C virus (HCV) with alkaloide tropolone (2-hydroxy-2,4,6-heptatriene-1-one) and its derivatives. The compounds were biochemically screened separately against the ATPase and helicase activities of HCV NS3. In the investigations presented, alkaIoide tropolone and its derivatives significantly inhibited the helicase activity of the viral protein when using a DNA substrate, with 50% inhibitory concentration values within a low micromolar range. The results using the RNA substrate were unexpected--none of the tropolone derivatives excerted any modulating influence towards the unwinding activity. Surprisingly, no influence of the nucleoside triphosphatase (NTPase) turnover was observed. Evidence is presented confirming that these compounds do not act by blocking the NTP-binding site, but by occupying an additional allosteric regulatory site. Further mechanisms of action, particularly of some of the derivatives, are discussed.


Assuntos
Antivirais/farmacologia , DNA Helicases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Nucleosídeo-Trifosfatase/antagonistas & inibidores , RNA Helicases/antagonistas & inibidores , Tropolona/farmacologia , Hepacivirus/enzimologia
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(2 Pt 1): 021904, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17930062

RESUMO

We study the stochastic kinetics of a signaling module consisting of a two-state stochastic point process with negative feedback. In the active state, a product is synthesized which increases the active-to-inactive transition rate of the process. We analyze this simple autoregulatory module using a path-integral technique based on the temporal statistics of state flips of the process. We develop a systematic framework to calculate averages, autocorrelations, and response functions by treating the feedback as a weak perturbation. Explicit analytical results are obtained to first order in the feedback strength. Monte Carlo simulations are performed to test the analytical results in the weak feedback limit and to investigate the strong feedback regime. We conclude by relating some of our results to experimental observations in the olfactory and visual sensory systems.


Assuntos
Biofísica/métodos , Retroalimentação Fisiológica , Animais , Biologia/métodos , Físico-Química/métodos , Simulação por Computador , Cinética , Modelos Biológicos , Modelos Estatísticos , Modelos Teóricos , Método de Monte Carlo , Neurônios/metabolismo , Condutos Olfatórios/metabolismo , Transdução de Sinais , Processos Estocásticos
5.
Nucleic Acids Res ; 30(23): 5074-86, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12466530

RESUMO

We characterised the human hSuv3p protein belonging to the family of NTPases/helicases. In yeast mitochondria the hSUV3 orthologue is a component of the degradosome complex and participates in mtRNA turnover and processing, while in Caenorhabditis elegans the hSUV3 orthologue is necessary for viability of early embryos. Using immunofluorescence analysis, an in vitro mitochondrial uptake assay and sub-fractionation of human mitochondria we show hSuv3p to be a soluble protein localised in the mitochondrial matrix. We expressed and purified recombinant hSuv3p protein from a bacterial expression system. The purified enzyme was capable of hydrolysing ATP with a K(m) of 41.9 micro M and the activity was only modestly stimulated by polynucleotides. hSuv3p unwound partly hybridised dsRNA and dsDNA structures with a very strong preference for the latter. The presented analysis of the hSuv3p NTPase/helicase suggests that new functions of the protein have been acquired in the course of evolution.


Assuntos
DNA Helicases/análise , DNA Helicases/metabolismo , Mitocôndrias/enzimologia , RNA Helicases/análise , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Células COS , RNA Helicases DEAD-box , DNA/metabolismo , DNA Helicases/química , Escherichia coli/genética , Células HeLa , Humanos , Mutação , Conformação de Ácido Nucleico , Transporte Proteico , RNA Helicases/química , Especificidade por Substrato , Leveduras/metabolismo
6.
Antivir Chem Chemother ; 16(5): 315-26, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16245647

RESUMO

To improve anti-helical activity of analogues of 1H-benzotriazole and 1H-benzimidazole their N-alkyl derivatives were synthesized and tested for antihelicase activity against enzymes of selected Flaviviridae including hepatitis C virus (HCV), West Nile virus (WNV), Dengue virus (DENV) and Japanese encephalitis virus (JEV). 1- and 2-alkyl derivatives of 4,5,6,7-tetrabromo-1H-benzotriazole were obtained by direct alkylation of 4,5,6,7-tetrabromo-1H-benzotriazole with the use of respective alkyl halides in the presence of KOH in methanol, to give a mixture of 1- and 2- isomers, which was separated by flash column chromatography in good yield. The proportion of isomers strongly depended on the reaction time and temperature. 1- and 2-hydroxyethyl and 1- and 2-chloroethyl derivatives of the tetrabromobenzo-triazole were synthesized with the use of 2-bromoethanol and 1-bromo-2-chloroethane respectively as alkylating agents. N-alkylation of this benzotriazole compound enhanced inhibitory activity and selectivity towards the helicase activity of HCV NTPase/helicase. The most active were the 2-methyl, 2-ethyl and 2-propyl derivatives (IC50 approximately 6.5 microM in the presence of DNA as a substrate). Derivatives of the benzotriazole in which hydroxyethyl or chloroethyl replaced the alkyl substituents lost their inhibitory activity. Brominated or methylated benzotriazole N(1) ribosides also did not exert helicase inhibitory activity. Although a number of N(1) and N(2) alkyl derivatives exerted good HCV and WNV helicase inhibitory activity when DNA was used as substrate, the activity was strongly decreased or even disappeared when RNA was used as substrate. The cytotoxicity tests in Vero and HeLa Tat cells showed a substantial decrease of cytotoxicity of N-alkyl derivatives as compared to the parent benzotriazole.


Assuntos
Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Flaviviridae/enzimologia , Hepacivirus/enzimologia , Nucleosídeo-Trifosfatase/antagonistas & inibidores , RNA Helicases/antagonistas & inibidores , Triazóis/síntese química , Triazóis/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Espectrofotometria Ultravioleta
7.
Nucleosides Nucleotides Nucleic Acids ; 24(10-12): 1775-88, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16438047

RESUMO

The attempted synthesis of a ring-expanded guanosine (1) containing the imidazo[4,5-e][1,3]diazepine ring system by condensation of 1-(2'-deoxy-beta-D-erythropentofuranosyl)-4-ethoxycarbonylimidazole-5-carbaldehyde (2) with guanidine resulted in the formation of an unexpected product, 1-(2'-deoxy-beta-D-erythropentofuranosyl)-5-(2, 4-diamino-3, 6-dihydro-1,3, 5-triazin-6-yl)imidazole-4-carboxamide (7). The structure as well as the pathway of formation of 7 was corroborated by isolation of the intermediate, followed by its conversion to the product. Nucleoside 7 showed promising in vitro anti-helicase activity against the West Nile virus NTPase/helicase with an IC50 of 3-10 microg/mL.


Assuntos
Antivirais/síntese química , Imidazóis/química , RNA Helicases/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Vírus do Nilo Ocidental/enzimologia , Antivirais/química , Relação Dose-Resposta a Droga , Guanosina/análogos & derivados , Guanosina/química , Imidazóis/síntese química , Nucleosídeo-Trifosfatase/antagonistas & inibidores , Nucleosídeo-Trifosfatase/química , RNA Helicases/química , Proteínas Virais/química
8.
J Med Chem ; 46(22): 4776-89, 2003 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-14561097

RESUMO

A series of ring-expanded ("fat") nucleoside analogues (RENs) containing the 6-aminoimidazo[4,5-e][1,3]diazepine-4,8-dione ring system have been synthesized and screened for inhibition of NTPase/helicase of the West Nile Virus (WNV). To assess the selectivity of RENs against the viral enzymes, a truncated form of human enzyme Suv3((Delta)(1)(-)(159)) was also included in the study. Ring-expanded nucleosides 16, 17, and 19, which possess the long C(12), C(14), and C(18) side-chains, respectively, at position 6, as well as the ring-expanded heterocycle 39, which contains aralkyl substitution at position 1, were all found to have excellent profiles of activity and selectivity toward the viral versus human enzymes against the West Nile Virus (IC(50) ranging 1-10 muM). Compound 30, while being an equally potent inhibitor of WNV, was found to be somewhat less selective, whereas compound 36, which is an alpha-anomeric counterpart of 30, exhibited potent and selective inhibition of WNV (IC(50) 1-3 muM). The same compounds that showed potent inhibition of viral helicase activity completely failed to show any activity against the viral NTPase reaction even up to 500 muM. However, at concentrations >500 muM of RENs and the ATP concentrations >10 times the K(m) value of the enzyme, a significant activation of NTPase activity was observed. This activating effect underwent further dramatic enhancement (>1000%) by further increases in ATP concentration in the reaction mixture, suggesting that the viral helicase and NTPase reactions are not coupled. A tentative mechanistic model has been proposed to explain the observed results.


Assuntos
Hidrolases Anidrido Ácido/antagonistas & inibidores , Antivirais/síntese química , Nucleosídeos/síntese química , RNA Helicases/antagonistas & inibidores , Vírus do Nilo Ocidental/enzimologia , Hidrolases Anidrido Ácido/química , Adenosina Trifosfatases/antagonistas & inibidores , Antivirais/química , Humanos , Conformação Molecular , Nucleosídeo-Trifosfatase , Nucleosídeos/química , RNA Helicases/química , Relação Estrutura-Atividade
9.
J Med Chem ; 46(19): 4149-64, 2003 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12954067

RESUMO

A series of ring-expanded ("fat") heterocycles, nucleoside and nucleotide analogues (RENs) containing the imidazo[4,5-e][1,3]diazepine ring system (9, 14, 15, 18, 24-26, 28, 31, and 33) and imidazo[4,5-e][1,2,4]triazepine ring systems (30b, 30c, 32, and 34), have been synthesized as potential inhibitors of NTPases/helicases of Flaviviridae, including the West Nile virus (WNV), hepatitis C virus (HCV), and Japanese encephalitis virus (JEV). An amino-terminal truncated form of human enzyme Suv3(delta1-159) was also included in the study so as to assess the selectivity of RENs against the viral enzymes. The analogues of RENs included structural variations at position 1 of the heterocyclic base and contained changes in both the type of sugar moieties (ribo, 2'-deoxyribo, and acyclic sugars) and the mode of attachment (alpha versus beta anomeric configuration) of those sugars to the heterocyclic base. The target RENs were biochemically screened separately against the helicase and ATPase activities of the viral NTPases/helicases. A number of RENs inhibited the viral helicase activity with IC50 values that ranged in micromolar concentrations and exhibited differential selectivity between the viral enzymes. In view of the observed tight complex between some nucleosides and RNA and/or DNA substrates of a helicase, the mechanism of action of RENs might involve their interaction with the appropriate substrate through binding to the major or minor groove of the double helix. The REN-5'-triphosphates, on the other hand, did not influence the above unwinding reaction, but instead exerted the inhibitory effect on the ATPase activity of the enzymes. The activity was found to be highly dependent upon the low concentration levels of the substrate ATP. At concentrations >500 microM of RENs and the ATP concentrations >10 times the Km value of the enzyme, a significant activation of NTPase activity was observed. This activating effect underwent further dramatic enhancement (>1000%) by further increases in ATP concentration in the reaction mixture. A tentative mechanistic model has been proposed to explain the observed results, which includes an additional allosteric binding site on the viral NTPases/helicases that can be occupied by nucleoside/nucleotide-type molecules such as RENs.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , DNA Helicases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Flaviviridae/enzimologia , Nucleosídeos/química , Nucleosídeos/farmacologia , Nucleotídeos/química , Nucleotídeos/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Azepinas/química , Azepinas/farmacologia , DNA/metabolismo , DNA Helicases/química , Vírus da Encefalite Japonesa (Espécie)/enzimologia , Hepacivirus/enzimologia , Humanos , Concentração Inibidora 50 , Nucleosídeos/síntese química , Nucleotídeos/síntese química , Poliproteínas/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Vírus do Nilo Ocidental/enzimologia
10.
Antiviral Res ; 55(3): 397-412, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12206878

RESUMO

The RNA nucleoside triphosphatase (NTPase)/helicases represent a large family of proteins that are detected in almost all biological systems where RNA plays a central role. The enzymes are capable of enzymatically unwinding duplex RNA structures by disrupting the hydrogen bonds that keep the two strands together. The strand separating activity is associated with hydrolysis of nucleoside triphosphate (NTP). Because of this, potential specific inhibitors of NTPase/helicases could act by one or more of the following mechanisms: (i) inhibition of NTPase activity by interference with NTP binding, (ii) inhibition of NTPase activity by an allosteric mechanism and (iii) inhibition of the coupling of NTP hydrolysis at the unwinding reaction. There are also other inhibitory mechanisms conceivable, which may involve a modulation of the interaction of the enzyme with its RNA substrate, for example, (iv) the competitive inhibition of RNA binding and (v) the inhibition of the unwinding by sterical blockade of the translocation of the NTPase/helicase along the polynucleotide chain. NTPase/helicase has also been identified in the viral genome of hepatitis C virus (HCV) which is a member of the Flaviviridae family. It is conceivable that the inhibition of the unwinding activity of the enzyme leads to the inhibition of virus replication and this may represent a novel antiviral strategy. This review updates the current spectrum of inhibitors targeting different mechanisms by which the NTPase and/or helicase activities of the HCV NTPase/helicase are inhibited. Consequently, some of the compounds might be important as antiviral agents against HCV.


Assuntos
Hidrolases Anidrido Ácido/antagonistas & inibidores , Antivirais/farmacologia , Hepacivirus/enzimologia , Proteínas não Estruturais Virais/metabolismo , Hidrolases Anidrido Ácido/química , Hidrolases Anidrido Ácido/metabolismo , Antivirais/administração & dosagem , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Hepacivirus/efeitos dos fármacos , Hepacivirus/metabolismo , Nucleosídeo-Trifosfatase , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA