Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Chem Soc Rev ; 51(17): 7509-7530, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35929481

RESUMO

Halide perovskite solar cells (PSCs) have achieved power conversion efficiencies (PCEs) approaching 26%, however, the stability issue hinders their commercialization. Due to the soft ionic nature of perovskite materials, the strain effect on perovskite films has been recently recognized as one of the key factors that affects their opto-electronic properties and the device stability. Herein, we summarized the origins of strain, characterization techniques, and implications of strain on both perovskite film and solar cells as well as various strategies to control the strain. Finally, we proposed effective strategies for future strain engineering. We believe this comprehensive review could further facilitate researchers with a deeper understanding of strain effect and enhance the research activity in engineering the strain to further improve performance and especially the device stability toward commercialization.

2.
Phys Chem Chem Phys ; 24(48): 29850-29861, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36468421

RESUMO

To gain a deeper understanding of the underlying charge processes in dye sensitized photocathodes, lateral electron hopping across dye-sensitized NiO photocathodes was investigated. For dye-sensitized systems, hole hopping across photoanodes has been studied extensively in the literature but no expansive studies on electron hopping in sensitized photocathodes exist today. Therefore, an organic p-type dye (TIP) with donor-linker-acceptor design, showing high stability and electrochemical reversibility, was used to study the electron transfer dynamics (electron-hopping) between dyes with temperature dependent spectroelectrochemistry and computational simulations. Besides intermolecular electron-hopping across the surface with a rate constant in the order of 105 s-1, our results show a second electron hopping pathway between NiO surface states with a rate constant in the order of 107 s-1, which precedes the electron hopping between the dyes. Upon application of a potential step negative enough to reduce both the dye and NiO surface states, the majority of NiO surface states need to be reduced before intermolecular electron transfer can take place. The results indicate that, in contrast to sensitized photoanodes where intermolecular charge transfer is known to influence recombination kinetics, intermolecular charge transport processes in TIP dye sensitized NiO photocathodes is less relevant because the fast electron transport between NiO surface states likely dominates recombination kinetics.

3.
Chem Soc Rev ; 50(22): 12450-12550, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34590638

RESUMO

Dye-sensitized solar cells (DSCs) are celebrating their 30th birthday and they are attracting a wealth of research efforts aimed at unleashing their full potential. In recent years, DSCs and dye-sensitized photoelectrochemical cells (DSPECs) have experienced a renaissance as the best technology for several niche applications that take advantage of DSCs' unique combination of properties: at low cost, they are composed of non-toxic materials, are colorful, transparent, and very efficient in low light conditions. This review summarizes the advancements in the field over the last decade, encompassing all aspects of the DSC technology: theoretical studies, characterization techniques, materials, applications as solar cells and as drivers for the synthesis of solar fuels, and commercialization efforts from various companies.

4.
J Am Chem Soc ; 142(43): 18668-18678, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33063996

RESUMO

Surface states of mesoporous NiO semiconductor films have particular properties differing from the bulk and are able to dramatically influence the interfacial electron transfer and adsorption of chemical species. To achieve a better performance of NiO-based p-type dye-sensitized solar cells (p-DSCs), the function of the surface states has to be understood. In this paper, we applied a modified atomic layer deposition procedure that is able to passivate 72% of the surface states on NiO by depositing a monolayer of Al2O3. This provides us with representative control samples to study the functions of the surface states on NiO films. A main conclusion is that surface states, rather than the bulk, are mainly responsible for the conductivity in mesoporous NiO films. Furthermore, surface states significantly affect dye regeneration (with I-/I3- as redox couple) and hole transport in NiO-based p-DSCs. A new dye regeneration mechanism is proposed in which electrons are transferred from reduced dye molecules to intra-bandgap states, and then to I3- species. The intra-bandgap states here act as catalysts to assist I3- reduction. A more complete mechanism is suggested to understand the particular hole transport behavior in p-DSCs, in which the hole transport time is independent of light intensity. This is ascribed to the percolation hole hopping on the surface states. When the concentration of surface states was significantly reduced, the light-independent charge transport behavior in pristine NiO-based p-DSCs transformed into having an exponential dependence on light intensity, similar to that observed in TiO2-based n-type DSCs. These conclusions on the function of surface states provide new insight into the electronic properties of mesoporous NiO films.

5.
Chemphyschem ; 20(24): 3322-3327, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31631458

RESUMO

The effect of substitutional Li doping into NiOx hole transporting layer (HTL) for use in inverted perovskite solar cells was systematically studied. Li doped NiOx thin films with preferential crystal growth along the (111) plane were deposited using a simple solution-based process. Mott-Schottky analysis showed that hole carrier concentration (NA ) is doubled by Li doping. Utilizing 4 % Li in NiOx improved the power conversion efficiency (PCE) of solar devices from 9.0 % to 12.6 %. Photoluminescence quenching investigations demonstrate better hole capturing properties of Li:NiOx compared to that of NiOx , leading to higher current densities by Li doping. The electrical conductivity of NiOx is improved by Li doping. Further improvements of the device were made by using an additional ZnO layer onto PCBM, to remove shunt paths, leading to a PCE of 14.2 % and a fill factor of 0.72.

6.
Inorg Chem ; 58(18): 12040-12052, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31483638

RESUMO

Metal halide compounds with photovoltaic properties prepared from solution have received increased attention for utilization in solar cells. In this work, low-toxicity cesium bismuth iodides are synthesized from solution, and their photovoltaic and optical properties as well as electronic and crystal structures are investigated. The X-ray diffraction patterns reveal that a CsI/BiI3 precursor ratio of 1.5:1 can convert pure rhombohedral BiI3 to pure hexagonal Cs3Bi2I9, but any ratio intermediate of this stoichiometry and pure BiI3 yields a mixture containing the two crystalline phases Cs3Bi2I9 and BiI3, with their relative fraction depending on the CsI/BiI3 ratio. Solar cells from the series of compounds are characterized, showing the highest efficiency for the compounds with a mixture of the two structures. The energies of the valence band edge were estimated using hard and soft X-ray photoelectron spectroscopy for more bulk and surface electronic properties, respectively. On the basis of these measurements, together with UV-vis-near-IR spectrophotometry, measuring the band gap, and Kelvin probe measurements for estimating the work function, an approximate energy diagram has been compiled clarifying the relationship between the positions of the valence and conduction band edges and the Fermi level.

7.
Phys Chem Chem Phys ; 20(46): 29566, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30431629

RESUMO

Correction for 'Ultrafast dye regeneration in a core-shell NiO-dye-TiO2 mesoporous film' by Lei Tian et al., Phys. Chem. Chem. Phys., 2018, 20, 36-40.

8.
Angew Chem Int Ed Engl ; 57(17): 4607-4611, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29534325

RESUMO

Herein, we report use of [Li+ @C60 ]TFSI- as a dopant for spiro-MeOTAD in lead halide perovskite solar cells. This approach gave an air stability nearly 10-fold that of conventional devices using Li+ TFSI- . Such high stability is attributed to the hydrophobic nature of [Li+ @C60 ]TFSI- repelling moisture and absorbing intruding oxygen, thereby protecting the perovskite device from degradation. Furthermore, [Li+ @C60 ]TFSI- could oxidize spiro-MeOTAD without the need for oxygen. The encapsulated devices exhibited outstanding air stability for more than 1000 h while illuminated under ambient conditions.

9.
Small ; 13(20)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28374954

RESUMO

Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO2 sub-micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd-doped TiO2 exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin-lattice and spin-spin relaxation times. Density functional theory calculations show that Gd3+ ions introduce impurity energy levels inside the bandgap of anatase TiO2 , and also create dipoles that are beneficial for charge separation and decreased electron-hole recombination in the doped lattice. The Gd-doped TiO2 nanobeads (NBs) show enhanced ability for ROS monitored via • OH radical photogeneration, in comparison with undoped TiO2 nanobeads and TiO2 P25, for Gd-doping up to 10%. Cellular internalization and biocompatibility of TiO2 @xGd NBs are tested in vitro on MG-63 human osteosarcoma cells, showing full biocompatibility. After photoactivation of the particles, anticancer trace by means of ROS photogeneration is observed just after 3 min irradiation.


Assuntos
Gadolínio/química , Luminescência , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/terapia , Espécies Reativas de Oxigênio/metabolismo , Marcadores de Spin , Titânio/química , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular , Teoria da Densidade Funcional , Humanos , Radical Hidroxila/química , Imageamento por Ressonância Magnética , Nanopartículas/ultraestrutura , Imagem Óptica , Porosidade , Temperatura , Raios Ultravioleta , Difração de Raios X
10.
Phys Chem Chem Phys ; 19(10): 7158-7166, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28230867

RESUMO

The stability of dye cations against recombination with conduction band electrons in mesoporous TiO2 electrodes is a key property for improving light harvesting in dye-sensitised solar cells. Using ultrafast transient broadband absorption spectroscopy, we monitor efficient intramolecular hole transfer in the solar cell dye E6 having two peripheral triarylamine acceptors. After photoexcitation, two hole transfer mechanisms are identified: a concerted mechanism for electron injection and hole transfer (2.4 ps) and a sequential mechanism with time constants of 3.9 ps and 30 ps. This way the dye retards unwanted recombination with a TiO2 conduction band electron by quickly moving the hole further away from the surface. Contact of the E6/TiO2 surface with the solvent acetonitrile has almost no influence on the electron injection and hole transfer kinetics. Fast hole transfer (2.8 ps) is also observed on a "non-injecting" Al2O3 surface generating a radical cation-radical anion species with a lifetime of 530 ps. The findings confirm the good intramolecular hole transfer properties of this dye on both thin films. In contrast, intramolecular hole transfer does not occur in the mid-polar organic solvent methyl acetate. This is confirmed by TDDFT calculations suggesting a polarity-induced reduction of the driving force for hole transfer. In methyl acetate, only the relaxation of the initially photoexcited core chromophore is observed including solvent relaxation processes of the electronically excited state S1/ICT.

11.
Phys Chem Chem Phys ; 19(47): 32132-32142, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29182690

RESUMO

In this work, we study the influence of the distance between electrodes on the performance of dye-sensitized solar cells based on TiO2 using the organic dye LEG4 and a Cu(dmp)2 redox couple (dmp = dimethyl phenantroline). The solar cells are characterized by a large open circuit voltage of up to 1.03 V, and an efficiency of 8.2% has been achieved for a 5.3 µm thick TiO2 film using an epoxy resin-based sealed cell configuration with a minimal separation between electrodes. Transient short-circuit photocurrent measurements up to an intensity of 3 Suns show a significant decay in photocurrent after an initial peak current upon switching on the light for larger distance, resulting in a lower steady state photocurrent. For the smaller distance cells, the steady state photocurrent is linear with light intensity up to 2 Suns. Charge extraction measurements under short-circuit conditions show that reducing the distance between electrodes increases the electron collection efficiency and thus, the attainable photocurrent. Recombination losses increase with larger electrode separation distance and higher light intensity due to mass transport limitation of the redox mediator. Electrochemical impedance measurements confirm the effect of electrode distance on the redox couple transport, showing an additional loop with increasing distance. For the configuration where the TiO2 film is in very close proximity to the PEDOT-covered counter electrode, inductive behavior is observed at low frequencies. The inductive behavior disappears with the incorporation of an insulating porous ZrO2 layer. The equivalent circuit for the solar cell has been expanded to include this effect.

12.
Phys Chem Chem Phys ; 20(1): 36-40, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29210392

RESUMO

In this study, a core-shell NiO-dye-TiO2 mesoporous film was fabricated for the first time, utilizing atomic layer deposition technique and a newly designed triphenylamine dye. The structure of the film was confirmed by SEM, TEM, and EDX. Excitation of the dye led to efficient and fast charge separation, by hole injection into NiO, followed by an unprecedentedly fast dye regeneration (t1/2 ≤ 500 fs) by electron transfer to TiO2. The resulting charge separated state showed a pronounced transient absorption spectrum caused by the Stark effect, and no significant decay was found within 1.9 ns. This indicates that charge recombination between NiO and TiO2 is much slower than that between the NiO and the reduced dye in the absence of the TiO2 layer (t1/2 ≈ 100 ps).

13.
J Am Chem Soc ; 138(45): 15087-15096, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27749064

RESUMO

Redox mediators play a major role determining the photocurrent and the photovoltage in dye-sensitized solar cells (DSCs). To maintain the photocurrent, the reduction of oxidized dye by the redox mediator should be significantly faster than the electron back transfer between TiO2 and the oxidized dye. The driving force for dye regeneration with the redox mediator should be sufficiently low to provide high photovoltages. With the introduction of our new copper complexes as promising redox mediators in DSCs both criteria are satisfied to enhance power conversion efficiencies. In this study, two copper bipyridyl complexes, Cu(II/I)(dmby)2TFSI2/1 (0.97 V vs SHE, dmby = 6,6'-dimethyl-2,2'-bipyridine) and Cu(II/I)(tmby)2TFSI2/1 (0.87 V vs SHE, tmby = 4,4',6,6'-tetramethyl-2,2'-bipyridine), are presented as new redox couples for DSCs. They are compared to previously reported Cu(II/I)(dmp)2TFSI2/1 (0.93 V vs SHE, dmp = bis(2,9-dimethyl-1,10-phenanthroline). Due to the small reorganization energy between Cu(I) and Cu(II) species, these copper complexes can sufficiently regenerate the oxidized dye molecules with close to unity yield at driving force potentials as low as 0.1 V. The high photovoltages of over 1.0 V were achieved by the series of copper complex based redox mediators without compromising photocurrent densities. Despite the small driving forces for dye regeneration, fast and efficient dye regeneration (2-3 µs) was observed for both complexes. As another advantage, the electron back transfer (recombination) rates were slower with Cu(II/I)(tmby)2TFSI2/1 as evidenced by longer lifetimes. The solar-to-electrical power conversion efficiencies for [Cu(tmby)2]2+/1+, [Cu(dmby)2]2+/1+, and [Cu(dmp)2]2+/1+ based electrolytes were 10.3%, 10.0%, and 10.3%, respectively, using the organic Y123 dye under 1000 W m-2 AM1.5G illumination. The high photovoltaic performance of Cu-based redox mediators underlines the significant potential of the new redox mediators and points to a new research and development direction for DSCs.

14.
Chemphyschem ; 17(23): 3845-3852, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27662628

RESUMO

A new class of dye-sensitized solar cells (DSSCs) using the hemicage cobalt-based mediator [Co(ttb)]2+/3+ with the highly preorganized hexadentate ligand 5,5'',5''''-((2,4,6-triethyl benzene-1,3,5-triyl)tris(ethane-2,1-diyl))tri-2,2'-bipyridine (ttb) has been fully investigated. The performances of DSSCs sensitized with organic D-π-A dyes utilizing either [Co(ttb)]2+/3+ or the conventional [Co(bpy)3 ]2+/3+ (bpy=2,2'-bipyridine) redox mediator are comparable under 1000 W m-2 AM 1.5 G illumination. However, the hemicage complexes exhibit exceptional stability under thermal and light stress. In particular, a 120-hour continuous light illumination stability test for DSSCs using [Co(ttb)]2+/3+ resulted in a 10 % increase in the performance, whereas a 40 % decrease in performance was found for [Co(bpy)3 ]2+/3+ electrolyte-based DSSCs under the same conditions. These results demonstrate the great promise of [Co(ttb)]2+/3+ complexes as redox mediators for efficient, cost-effective, large-scale DSSC devices.

15.
Chemphyschem ; 17(10): 1441-5, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-26919196

RESUMO

A high power conversion efficiency (PCE) of 5.5 % was achieved by efficiently incorporating a diketopyrrolopyrrole-based dye with a conducting polymer poly(3,4-ethylenediothiophene) (PEDOT) hole-transporting material (HTM) that was formed in situ, compared with a PCE of 2.9 % for small molecular spiro-OMeTAD-based solid-state dye solar cells (sDSCs). The high PCE for PEDOT-based sDSCs is mainly attributed to the significantly enhanced charge-collection efficiency, as a result of the three-order-of-magnitude higher hole conductivity (0.53 S cm(-1) ) compared with that of the widely used low molecular weight HTM spiro-OMeTAD (3.5×10(-4)  S cm(-1) ).

16.
Phys Chem Chem Phys ; 18(7): 5080-5, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26478116

RESUMO

Solid state p-type dye-sensitized solar cells (p-ssDSCs) have been proposed and fabricated for the first time, using the organic dye P1 as the sensitizer on mesoporous NiO and phenyl-C61-butyric acid methyl ester (PCBM) as the electron conductor. The p-ssDSC has shown an impressive open circuit photovoltage of 620 mV. Femtosecond and nanosecond transient absorption spectroscopy has given evidence for sub-ps hole injection from the excited P1 to NiO, followed by electron transfer from P1˙(-) to PCBM.

17.
Phys Chem Chem Phys ; 18(12): 8419-27, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26931779

RESUMO

In this study we report the application of three cobalt redox shuttles in 100% aqueous electrolyte dye-sensitised solar cells (DSCs). By using chloride as a counter-ion for cobalt bipyridine, cobalt phenanthroline and cobalt bipyridine pyrazole, the redox shuttles were made water soluble; no surfactant or further treatment was necessary. A simple system of merely the redox shuttles and 1-methylbenzimidazole (MBI) in water as an electrolyte in combination with an organic dye and a mesoporous PEDOT counter electrode was optimised. The optimisation resulted in an average efficiency of 5.5% (record efficiency of 5.7%) at 1 sun. The results of this study present promising routes for further improvements of aqueous cobalt electrolyte DSCs.

18.
Phys Chem Chem Phys ; 18(1): 252-60, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26608268

RESUMO

The effects of alkoxy chain length in triarylamine based donor-acceptor organic dyes are investigated with respect to the electronic and molecular surface structures on the performance of solar cells and the electron lifetime. The dyes were investigated when adsorbed on TiO2 in a configuration that can be used for dye-sensitized solar cells (DSCs). Specifically, the two dyes D35 and D45 were compared using photoelectron spectroscopy (PES) and density functional theory (DFT) calculations. The differences in solar cell characteristics when longer alkoxy chains are introduced in the dye donor unit are attributed to geometrical changes in dye packing while only minor differences were observed in the electronic structure. A higher dye load was observed for D45 on TiO2. However, D35 based solar cells result in higher photocurrent although the dye load is lower. This is explained by different geometrical structures of the dyes on the surface.

19.
Anal Chem ; 87(7): 3942-8, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25751409

RESUMO

Solid-state dye-sensitized solar cells (sDSCs) are devoid of such issues as electrolyte evaporation or leakage and electrode corrosion, which are typical for traditional liquid electrolyte-based DSCs. Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most popular and efficient p-type conducting polymers that are used in sDSCs as a solid-state hole-transporting material. The most convenient way to deposit this insoluble polymer into the dye-sensitized mesoporous working electrode is in situ photoelectrochemical polymerization. Apparently, the structure and the physicochemical properties of the generated conducting polymer, which determine the photovoltaic performance of the corresponding solar cell, can be significantly affected by the preparation conditions. Therefore, a simple and fast analytical method that can reveal information on polymer chain length, possible chemical modifications, and impurities is strongly required for the rapid development of efficient solar energy-converting devices. In this contribution, we applied matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for the analysis of PEDOT directly on sDSCs. It was found that the PEDOT generated in aqueous micellar medium possesses relatively shorter polymeric chains than the PEDOT deposited from an organic medium. Furthermore, the micellar electrolyte promotes a transformation of one of the thiophene terminal units to thiophenone. The introduction of a carbonyl group into the PEDOT molecule impedes the growth of the polymer chain and reduces the conductivity of the final polymer film. Both the simplicity of sample preparation (only application of the organic matrix onto the solar cell is needed) and the rapidity of analysis hold the promise of making MALDI MS an essential tool for the physicochemical characterization of conducting polymer-based sDSCs.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/análise , Corantes/química , Técnicas Eletroquímicas , Micelas , Polímeros/análise , Energia Solar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tiofenos/química , Processos Fotoquímicos , Polimerização , Água/química
20.
Phys Chem Chem Phys ; 17(24): 15868-75, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26016854

RESUMO

Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ∼0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ∼0.5 µm, which is smaller than the ∼2.8 µm found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA