Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(7): 1022-1034, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34559191

RESUMO

The purpose of our study is to determine DDQ (diethyl (3,4-dihydroxyphenethylamino) (quinolin-4-yl) methylphosphonate)-a newly discovered molecule that has been shown to protect against phosphorylated tau (p-tau) in Alzheimer's disease (AD) pathogenesis. We used a well-studied tau (P301L) transgenic mouse model to achieve our goal. We administered DDQ into 12-month-old Tau mice, at 20 mg/kg body weight intraperitoneally two times per week for 2 months. We also assessed DDQ levels in the blood, skeletal muscle and brain using biochemical and molecular techniques. We investigated the mRNA and protein levels of mitochondrial dynamics, biogenesis, synaptic, p-tau and longevity genes sirtuins in DDQ-treated tau mice using real-time quantitative PCR (q-RT-PCR), immunoblotting and immunofluorescence techniques. Our extensive pharmacodynamics investigations revealed that skeletal muscle had the greatest peak levels of DDQ, followed by serum and brain. Interestingly, DDQ-treated tau mice had higher levels of mitochondrial fusion, biogenesis, synaptic genes and sirtuins than DDQ-untreated tau mice. In addition, DDQ-treated tau mice had lower levels of mitochondrial fission and p-tau than untreated tau mice. The current findings, combined with our prior findings, firmly show that DDQ possesses anti-aging, anti-amyloid-beta and anti-p-tau properties, making it a promising molecule for reducing age-related, amyloid-beta and p-tau-induced synaptic and mitochondrial toxicities in AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682775

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common cause of dementia in older people. AD is associated with the loss of synapses, oxidative stress, mitochondrial structural and functional abnormalities, microRNA deregulation, inflammatory responses, neuronal loss, accumulation of amyloid-beta (Aß) and phosphorylated tau (p-tau). AD occurs in two forms: early onset, familial AD and late-onset, sporadic AD. Causal factors are still unknown for a vast majority of AD patients. Genetic polymorphisms are proposed to contribute to late-onset AD via age-dependent increases in oxidative stress and mitochondrial abnormalities. Recent research from our lab revealed that reduced levels of Rlip76 induce oxidative stress, mitochondrial dysfunction and synaptic damage, leading to molecular and behavioral phenotypes resembling late-onset AD. Rlip76 is a multifunctional 76 kDa protein encoded by the RALBP1 gene, located on chromosome 18. Rlip is a stress-protective ATPase of the mercapturic acid pathway that couples clathrin-dependent endocytosis with the efflux of glutathione-electrophile conjugates. Rlip is evolutionarily highly conserved across species and is ubiquitously expressed in all tissues, including AD-affected brain regions, the cerebral cortex and hippocampus, where highly active neuronal metabolisms render the cells highly susceptible to intracellular oxidative damage. In the current article, we summarize molecular and cellular features of Rlip and how depleted Rlip may exacerbate oxidative stress, mitochondrial dysfunction and synaptic damage in AD. We also discuss the possible role of Rlip in aspects of learning and memory via axonal growth, dendritic remodeling, and receptor regulation. We conclude with a discussion of the potential for the contribution of genetic polymorphisms in Rlip to AD progression and the potential for Rlip-based therapies.


Assuntos
Doença de Alzheimer , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo , Sinapses/metabolismo
3.
J Neuroinflammation ; 16(1): 275, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882005

RESUMO

BACKGROUND: Neuroinflammation, typified by elevated levels of interleukin-1 (IL-1) α and ß, and deficits in proteostasis, characterized by accumulation of polyubiquitinated proteins and other aggregates, are associated with neurodegenerative disease independently and through interactions of the two phenomena. We investigated the influence of IL-1ß on ubiquitination via its impact on activation of the E3 ligase parkin by either phosphorylated ubiquitin (P-Ub) or NEDD8. METHODS: Immunohistochemistry and Proximity Ligation Assay were used to assess colocalization of parkin with P-tau or NEDD8 in hippocampus from Alzheimer patients (AD) and controls. IL-1ß effects on PINK1, P-Ub, parkin, P-parkin, and GSK3ß-as well as phosphorylation of parkin by GSK3ß-were assessed in cell cultures by western immunoblot, using two inhibitors and siRNA knockdown to suppress GSK3ß. Computer modeling characterized the binding and the effects of P-Ub and NEDD8 on parkin. IL-1α, IL-1ß, and parkin gene expression was assessed by RT-PCR in brains of 2- and 17-month-old PD-APP mice and wild-type littermates. RESULTS: IL-1α, IL-1ß, and parkin mRNA levels were higher in PD-APP mice compared with wild-type littermates, and IL-1α-laden glia surrounded parkin- and P-tau-laden neurons in human AD. Such neurons showed a nuclear-to-cytoplasmic translocation of NEDD8 that was mimicked in IL-1ß-treated primary neuronal cultures. These cultures also showed higher parkin levels and GSK3ß-induced parkin phosphorylation; PINK1 levels were suppressed. In silico simulation predicted that binding of either P-Ub or NEDD8 at a singular position on parkin opens the UBL domain, exposing Ser65 for parkin activation. CONCLUSIONS: The promotion of parkin- and NEDD8-mediated ubiquitination by IL-1ß is consistent with an acute neuroprotective role. However, accumulations of P-tau and P-Ub and other elements of proteostasis, such as translocated NEDD8, in AD and in response to IL-1ß suggest either over-stimulation or a proteostatic failure that may result from chronic IL-1ß elevation, easily envisioned considering its early induction in Down's syndrome and mild cognitive impairment. The findings further link autophagy and neuroinflammation, two important aspects of AD pathogenesis, which have previously been only loosely related.


Assuntos
Doença de Alzheimer/metabolismo , Interleucina-1beta/metabolismo , Proteína NEDD8/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Idoso , Animais , Ativação Enzimática/fisiologia , Feminino , Humanos , Masculino , Camundongos , Modelos Moleculares , Transporte Proteico/fisiologia , Ratos Sprague-Dawley , Ubiquitina/metabolismo
4.
Chromatographia ; 80(12): 1723-1732, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213145

RESUMO

Small molecules containing carboxylic acid functional groups are ubiquitous throughout biology, playing vital roles in biological chemistry ranging from energy metabolism to cellular signaling. This paper describes a new derivatization reagent, 4-bromo-N-methylbenzylamine, which was selected for its potential to derivatize mono-, di- and tri-carboxylic acids, such as the intermediates of the tricarboxylic acid (TCA) cycle. This derivatization procedure facilitated the use of positive electrospray ionization (ESI) tandem mass spectrometry (MS/MS) detection of derivatized species allowing for clear identification thanks to the easily recognizable isotope pattern of the incorporated bromine. A liquid chromatography (LC)-MS/MS method was developed which provided limits of detection between 0.2 and 44 µg L-1 in under 6 min, depending on the analyte and total analysis time. This method was successfully applied in both in vitro and in vivo models.

5.
J Ren Nutr ; 25(2): 205-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25556310

RESUMO

A need exists for developing new therapies to improve cardiovascular outcomes in end-stage kidney disease. Three new areas that address novel pathophysiological mechanisms and/or therapeutic approaches toward cardiovascular events in chronic kidney disease patients include the use of an anti-inflammatory agent, the role of catalytic iron, and protein carbamylation. In preliminary studies, hydroxychloroquine, which has multiple anti-inflammatory properties, preserved vascular compliance for the aorta and major vessels, as well as reduced the extent of severity of atherosclerosis in ApoE-/- mice. The ability of iron to rapidly and reversibly cycle between 2 oxidation states makes iron potentially hazardous by enabling it to participate in the generation of powerful oxidant species. We have shown that high catalytic iron in the general population is associated with a 4-fold increase in prevalent cardiovascular disease (CVD), even after accounting for traditional risk factors. In addition, the highest levels of catalytic iron are present in dialysis patients and, more specifically, patients with prevalent CVD have several-fold higher catalytic iron levels compared with controls without CVD. These data suggest the utility of iron chelators for preventing and treating CVD in patients with chronic kidney disease and should be further investigated. Carbamylation of proteins results from nonenzymatic chemical modification by isocyanic acid derived from urea and an alternative route, the myeloperoxidase-catalyzed oxidation of thiocyanate. We have shown carbamylated low-density lipoprotein to have all the major biological effects relevant to atherosclerosis including endothelial cell injury, increased expression of cell adhesion molecules, and vascular smooth muscle cell proliferation. In 2 separate clinical studies, plasma levels of carbamylated protein independently predicted an increased risk of CVD and death.


Assuntos
Aterosclerose/complicações , Aterosclerose/fisiopatologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Fatores de Risco
6.
Am J Pathol ; 183(3): 796-807, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23867799

RESUMO

Gadolinium-based contrast agents are linked to nephrogenic systemic fibrosis in patients with renal insufficiency. The pathology of nephrogenic systemic fibrosis is characterized by abnormal tissue repair: fibrosis and ectopic ossification. The mechanisms by which gadolinium could induce fibrosis and ossification are not known. We examined in vitro the effect of a gadolinium-based contrast agent on human peripheral blood mononuclear cells for phenotype and function relevant to the pathology of nephrogenic systemic fibrosis using immunofluorescence, flow cytometry, real-time PCR, and osteogenic assays. We also examined tissues from patients with nephrogenic systemic fibrosis, using IHC to identify the presence of cells with phenotype induced by gadolinium. Gadolinium contrast induced differentiation of human peripheral blood mononuclear cells into a unique cellular phenotype--CD163(+) cells expressing proteins involved in fibrosis and bone formation. These cells express fibroblast growth factor (FGF)23, osteoblast transcription factors Runt-related transcription factor 2, and osterix, and show an osteogenic phenotype in in vitro assays. We show in vivo the presence of CD163(+)/procollagen-1(+)/osteocalcin(+) cells in the fibrotic and calcified tissues of nephrogenic systemic fibrosis patients. Gadolinium contrast-induced CD163(+)/ferroportin(+)/FGF23(+) cells with osteogenic potential may play a role in systemic fibrosis and ectopic ossification in nephrogenic systemic fibrosis.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Meios de Contraste/efeitos adversos , Gadolínio/efeitos adversos , Dermopatia Fibrosante Nefrogênica/induzido quimicamente , Dermopatia Fibrosante Nefrogênica/patologia , Osteogênese , Receptores de Superfície Celular/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Colágeno/metabolismo , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Gadolínio DTPA/efeitos adversos , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Dermopatia Fibrosante Nefrogênica/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteocalcina/metabolismo , Fenótipo , Pele/metabolismo , Pele/patologia , Fatores de Transcrição/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166932, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37926360

RESUMO

Several converging lines of evidence from our group support a potential role of RLIP76 (AKA Rlip) in neurodegenerative disorders, including Alzheimer's Disease (AD). However, the role of Rlip in Alzheimer's and other neurodegenerative diseases is not well understood. The purpose of the present study is to determine the role of Rlip in the brains of AD patients and control subjects. To achieve our goals, we used frozen tissues and formalin-fixed paraffin-embedded postmortem brains from AD patients of different Braak stages and age-matched control subjects. Our immunohistology and immunoblotting blotting analysis revealed that expression of Rlip protein gradually and significantly decreased (p = 0.0001) with AD progression, being lowest in Braak stage IV-V. Rlip was colocalized with Amyloid beta (Aß) and phosphorylated tau (p-Tau) as observed by IHC staining and co-immunoprecipitation studies. Lipid peroxidation (4-HNE generation) and H2O2 production were significantly higher (p = 0.004 and 0.0001 respectively) in AD patients compared to controls, and this was accompanied by lower ATP production in AD (p = 0.0009). Oxidative DNA damage was measured by 8-Hydroxyguanosine (8-OHdG) in tissue lysates by ELISA and COMET assay. AD 8-OHdG levels were significantly higher (p = 0.0001) compared to controls. COMET assay was performed in brain cells, isolated from frozen postmortem samples. The control samples showed minimal DNA in comets representing few DNA strand breaks (<20 %), (score-0-1). However, the AD group showed an average of 50 % to 65 % of DNA in comet tails (score-4-5) indicating numerous DNA strand breaks. The difference between the two groups was significant (p = 0.001), as analyzed by Open Comet by ImageJ. Elevated DNA damage was further examined by western blot analysis for phosphorylated histone variant H2AX (γH2AX). Induction of γH2AX was very significant (p < 0.0001) and confirmed the presence of double-strand breaks in DNA. Overall, our results indicate an important role for Rlip in maintaining neuronal health and homeostasis by suppressing cellular oxidative stress and DNA damage. Based on our findings, we cautiously conclude that Rlip is a promising therapeutic target for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doenças Mitocondriais , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Autopsia , Encéfalo/metabolismo , DNA/metabolismo , Peróxido de Hidrogênio/metabolismo , Doenças Mitocondriais/metabolismo , Estresse Oxidativo/fisiologia
9.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166759, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37225106

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that affects a large proportion of the aging population. RalBP1 (Rlip) is a stress-activated protein that plays a crucial role in oxidative stress and mitochondrial dysfunction in aging and neurodegenerative diseases but its precise role in the progression of AD is unclear. The purpose of our study is to understand the role of Rlip in the progression and pathogenesis of AD in mutant APP/amyloid beta (Aß)-expressed mouse primary hippocampal (HT22) hippocampal neurons. In the current study, we used HT22 neurons that express mAPP, transfected with Rlip-cDNA and/or RNA silenced, and studied cell survival, mitochondrial respiration, mitochondrial function, immunoblotting & immunofluorescence analysis of synaptic and mitophagy protein's and colocalization of Rlip and mutant APP/Aß proteins and mitochondrial length and number. We also assessed Rlip levels in autopsy brains from AD patients and control subjects. We found cell survival was decreased in mAPP-HT22 cells and RNA-silenced HT22 cells. However, cell survival was increased in Rlip-overexpressed mAPP-HT22 cells. Oxygen consumption rate (OCR) was decreased in mAPP-HT22 cells and RNA-silenced Rlip-HT22 cells. OCR was increased in Rlip-overexpressed in mAPP-HT22 cells. Mitochondrial function was defective in mAPP-HT22 cells and RNA silenced Rlip in HT22 cells, however, it was rescued in Rlip overexpressed mAPP-HT22 cells. Synaptic and mitophagy proteins were decreased in mAPP-HT22 cells, further reducing RNA-silenced Rlip-HT22 cells. However, these were increased in mAPP+Rlip-HT22 cells. Colocalization analysis revealed Rlip is colocalized with mAPP/Aß. An increased number of mitochondria and decreased mitochondrial length were found in mAPP-HT22 cells. These were rescued in Rlip overexpressed mAPP-HT22 cells. Reduced Rlip levels were found in autopsy brains from AD patients. These observations strongly suggest that Rlip deficiency causes oxidative stress/mitochondrial dysfunction and Rlip overexpression reduced these defects.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doenças Neurodegenerativas/patologia , Estresse Oxidativo , Mitocôndrias/metabolismo , RNA/metabolismo
10.
Cells ; 12(12)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37371116

RESUMO

RalBP1 (Rlip) is a stress-activated protein that is believed to play a large role in aging and neurodegenerative diseases such as Alzheimer's disease (AD) and other tauopathies. The purpose of our study was to understand the role of Rlip in mutant Tau-expressed immortalized hippocampal HT22 cells. In the current study, we used mutant Tau (mTau)-expressed HT22 neurons and HT22 cells transfected with Rlip-cDNA and/or silenced RNA, and studied the cell survival, mitochondrial respiration, mitochondrial function, immunoblotting, and immunofluorescence analysis of synaptic and mitophagy proteins and the colocalization of Rlip and mTau proteins. We found Rlip protein levels were reduced in mTau-HT22 cells, Rlip silenced HT22 cells, and mTau + Rlip RNA silenced HT22 cells; on the other hand, increased Rlip levels were observed in Rlip cDNA transfected HT22 cells. We found cell survival was decreased in mTau-HT22 cells and RNA-silenced HT22 cells. However, cell survival was increased in Rlip-overexpressed mTau-HT22 cells. A significantly reduced oxygen consumption rate (OCR) was found in mTau-HT22 cells and in RNA-silenced Rlip-HT22 cells, with an even greater reduction in mTau-HT22 + Rlip RNA-silenced HT22 cells. A significantly increased OCR was found in Rlip-overexpressed HT22 cells and in all groups of cells that overexpress Rlip cDNA. Mitochondrial function was defective in mTau-HT22 cells, RNA silenced Rlip in HT22 cells, and was further defective in mTau-HT22 + Rlip RNA-silenced HT22 cells; however, it was rescued in Rlip overexpressed in all groups of HT22 cells. Synaptic and mitophagy proteins were decreased in mTau-HT22 cells, and further reductions were found in RNA-silenced mTau-HT22 cells. However, these were increased in mTau + Rlip-overexpressed HT22 cells. An increased number of mitochondria and decreased mitochondrial length were found in mTau-HT22 cells. These were rescued in Rlip-overexpressed mTau-HT22 cells. These observations strongly suggest that Rlip deficiency causes oxidative stress/mitochondrial dysfunction and Rlip overexpression reverses these defects. Overall, our findings revealed that Rlip is a promising new target for aging, AD, and other tauopathies/neurological diseases.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , DNA Complementar/metabolismo , Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Tauopatias/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , RNA/metabolismo , Hipocampo/metabolismo
11.
J Alzheimers Dis ; 87(1): 33-49, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275552

RESUMO

Alzheimer's disease (AD) is a devastating illness in elderly individuals, that currently has no known cure. Causal genetic factors only account for 1-2% of AD patients. However, other causal factors are still unknown for a majority of AD patients. Currently, multiple factors are implicated in late-onset AD, including unhealthy diet, physical inactivity, traumatic brain injury, chronic conditions, epigenetic factors, and environmental exposures. Although clinical symptoms of dementia are common to all races and ethnic groups, conditions that lead to dementia are different in terms of lifestyle, genetic profile, and socio-economic conditions. Increasing evidence also suggests that some elderly individuals age without cognitive impairments in their 60-90s as seen in rural West Texas, while some individuals progress with chronic conditions and cognitive impairments into their 60s. To understand these discriminations, we assessed current literature on demographic features of health in rural West Texas. This paper also outlines our initiated clinical study with a purpose of understanding the factors that allow some individuals to live without cognitive impairments at the age of 60-90 years, whereas others develop deficits in cognitive function around or above 60 years. Our ongoing study hopes to determine the factors that delay aging in some individuals by investigating various aspects including genetics, epigenetics, ethnicity, biology, culture, and lifestyle. This will be achieved by gathering information about participants' ethnographic profiles, cognitive assessments, blood-profiles, brain scans, and blood-based genomic analyses in relation to lifestyle. The outcomes of our study will provide insights into healthy aging in rural West Texas.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Envelhecimento Saudável , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Doença Crônica , Disfunção Cognitiva/psicologia , Humanos , Texas/epidemiologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-36816155

RESUMO

On January 30, 2020, the COVID-19 epidemic was declared an international public health emergency by the World Health Organization. Given the growing impact of the pandemic, there is great interest in finding potential targets for treating infected or hospitalized COVID-19 patients. Therapeutic studies have been conducted on pre-existing drugs, which vary by country, including anti-malarial agents, antiviral agents, and convalescent plasma. However, many of these agents are ineffective at reducing mortality or only shorten the severity or duration of COVID-19 illness in hospitalized patients. As such, other alternatives for treating COVID-19 are being investigated. One such target of interest has been clathrin-dependent endocytosis (CDE). Clathrin-dependent endocytosis is the most commonly observed mechanism of viral entry into cells. However, there have been no published studies to date on CDE inhibition strategies against COVID-19. One such target is Rlip or RLIP76 (human gene RALBP1, 18p11.22). Among its many functions, Rlip is a stress-protective, Ral-regulated ATPase of the mercapturic acid pathway that transports glutathione-electrophile conjugates of electrophilic toxins, which are precursors of mercapturic acid that precedes de-glutamylation by gamma-glutamyl transferase. Rlip is also regulated by several G-proteins that coordinate movement of cells, organelles, membranes, cytoskeleton, macromolecules, and other small molecules. Previous studies have link Rlip in the pathogenesis of several viral illness. In this paper, we want to propose that RLIP76 (Rlip or RALBP1) may be a novel target for treating SARS-CoV-2 viral infections.

13.
Cancers (Basel) ; 14(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35158795

RESUMO

Rlip76 (Rlip) is a multifunctional membrane protein that facilitates the high metabolic rates of cancer cells through the efflux of toxic metabolites and other functions. Rlip inhibition or depletion results in broad-spectrum anti-cancer effects in vitro and in vivo. Rlip depletion effectively suppresses malignancy and causes global reversion of characteristic CpG island methylomic and transcriptomic aberrations in the p53-null mouse model of spontaneous carcinogenesis through incompletely defined signaling and transcriptomic mechanisms. The methylome and transcriptome are normally regulated by the concerted actions of several mechanisms that include chromatin remodeling, promoter methylation, transcription factor interactions, and miRNAs. The present studies investigated the interaction of Rlip depletion or inhibition with the promoter methylation and transcription of selected cancer-related genes identified as being affected by Rlip depletion in our previous studies. We constructed novel promoter CpG island/luciferase reporter plasmids that respond only to CpG methylation and transcription factors. We found that Rlip depletion regulated expression by a transcription factor-based mechanism that functioned independently of promoter CpG methylation, lipid peroxidation, and p53 status.

14.
NPJ Genom Med ; 7(1): 47, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941185

RESUMO

MicroRNAs (miRNAs) are found in nerve terminals, synaptic vesicles, and synaptosomes, but it is unclear whether synaptic and cytosolic miRNA populations differ in Alzheimer's disease (AD) or if synaptosomal miRNAs affect AD synapse activity. To address these questions, we generated synaptosomes and cytosolic fractions from postmortem brains of AD and unaffected control (UC) samples and analyzed them using a global Affymetrix miRNAs microarray platform. A group of miRNAs significantly differed (P < 0.0001) with high fold changes variance (+/- >200-fold) in their expressions in different comparisons: (1) UC synaptosome vs UC cytosol, (2) AD synaptosomes vs AD cytosol, (3) AD cytosol vs UC cytosol, and (4) AD synaptosomes vs UC synaptosomes. MiRNAs data analysis revealed that some potential miRNAs were consistently different across sample groups. These differentially expressed miRNAs were further validated using AD postmortem brains, brains of APP transgenic (Tg2576), Tau transgenic (P301L), and wild-type mice. The miR-501-3p, miR-502-3p, and miR-877-5p were identified as potential synaptosomal miRNAs upregulated with disease progression based on AD Braak stages. Gene Ontology Enrichment and Ingenuity Pathway Analysis of synaptosomal miRNAs showed the involvement of miRNAs in nervous system development, cell junction organization, synapse assembly formation, and function of GABAergic synapse. This is the first description of synaptic versus cytosolic miRNAs in AD and their significance in synapse function.

15.
Mol Neurobiol ; 58(7): 3588-3600, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33768469

RESUMO

The purpose of our study is to determine the protective effects of the newly discovered molecule DDQ (diethyl (3,4-dihydroxyphenethylamino)(quinolin-4-yl) methylphosphonate) against aging in an in vitro, mouse primary hippocampal neurons, HT22 cells, and in vivo, 24-month-old C57BL6/J mice. Using biochemical and molecular methods, we studied the half-life period in the blood and brain, optimized the dose, determined dose-response (using 1, 5, 10, 20, and 50 mg/kg body weight), and measured the levels of blood, skeletal muscle, and brain. Using Morris water maze (cognitive behavior), q-RT-PCR (mRNA and protein levels of longevity genes SIRTUINS), transmission electron microscopy (mitochondrial number and length), and Golgi-Cox staining (dendritic spine number and length) were assessed in 24-month-old C57BL6/J mice. Out of 5 different doses of DDQ, the 20 mg/kg body weight dose showed the strongest protective effects against aging in C57BL6/J mice. The half-life time of DDQ is 20 h in the serum and 12 h in the brain. Our extensive pharmacodynamics analysis revealed high peak levels of DDQ in the skeletal muscle, followed by serum and brain. Using mouse primary hippocampal (HT22) neurons and 24-month-old C57BL6/J mice, we tested the protective effects of DDQ. Interestingly, longevity genes SIRTUINS were upregulated in DDQ-treated HT22 cells, and DDQ-treated aged wild-type mice relative to DDQ-untreated cells and untreated aged control mice. Dendritic spines and the quality of mitochondria were significantly increased in DDQ-treated aged mice. Current study findings, together with our previous study observations, strongly suggest that DDQ has anti-aging effects and warrants further investigations of anti-inflammatory, anti-DNA damage, and telomerase activity studies.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Dopaminérgicos/farmacologia , Envelhecimento/metabolismo , Animais , Antioxidantes/química , Encéfalo/metabolismo , Linhagem Celular , Dopaminérgicos/química , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
16.
Mitochondrion ; 59: 17-29, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33839321

RESUMO

The purpose of our study is to determine the protective effects of the newly discovered molecule DDQ (diethyl (3,4-dihydroxyphenethylamino)(quinolin-4-yl) methylphosphonate) against mutant APP and amyloid-beta (Aß) in Alzheimer's disease (AD). To achieve our objective, we used a well characterized amyloid-beta precursor protein (APP) transgenic mouse model (Tg2576 strain). We administered DDQ, a 20 mg/kg body weight (previously determined in our laboratory) intra-peritoneally 3-times per week for 2 months, starting at the beginning of the 12th month, until the end of the 14th month. Further, using biochemical and molecular methods, we measured the levels of DDQ in the blood, skeletal muscle, and brain. Using Morris Water Maze, Y-maze, open field, and rotarod tests, we assessed cognitive behavior after DDQ treatment. Using q-RT-PCR, immunoblotting, transmission electron microscopy, and Golgi-cox staining methods, we studied mRNA and protein levels of longevity genes SIRTUINS, mitochondrial number & length, and dendritic spine number and length in DDQ-treated APP mice. Our extensive pharmacodynamics analysis revealed high peak levels of DDQ in the skeletal muscle, followed by serum and brain. Our behavioral analysis of rotarod, open field, Y-maze, and Morris Water Maze tests revealed that DDQ ameliorated cognitive decline (Morris Water Maze), improved working memory (Y-Maze), exploratory behavior (open field), and motor coordination (rotarod) in DDQ-treated APP mice. Interestingly, longevity genes SIRTUINS, mitochondrial biogenesis, fusion, mitophagy, autophagy and synaptic genes were upregulated in DDQ-treated APP mice relative to untreated APP mice. Dendritic spines and the quality mitochondria were significantly increased in DDQ treated APP mice. Current study findings, together with our previous study observations, strongly suggest that DDQ has anti-aging, and anti-amyloid-beta effects and a promising molecule to reduce age-and amyloid-beta-induced toxicities in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Bibliotecas de Moléculas Pequenas/administração & dosagem , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/efeitos dos fármacos , Animais , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intraperitoneais , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Mutação , Sirtuínas/genética , Sirtuínas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacocinética
17.
Cancers (Basel) ; 13(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34944997

RESUMO

Her2-amplified breast cancers resistant to available Her2-targeted therapeutics continue to be a challenge in breast cancer therapy. Dox is the mainstay of chemotherapy of all types of breast cancer, but its usefulness is limited by cumulative cardiotoxicity. Because oxidative stress caused by dox generates the pro-apoptotic Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE), we surmised that Ω-6 PUFAs would increase the effectiveness of dox chemotherapy. Since the mercapturic acid pathway enzyme RALBP1 (also known as RLIP76 or Rlip) that limits cellular accumulation of 4-HNE also mediates dox resistance, the combination of Ω-6 PUFAs and Rlip depletion could synergistically improve the efficacy of dox. Thus, we studied the effects of the Ω-6 PUFA arachidonic acid (AA) and Rlip knockdown on the antineoplastic activity of dox towards Her2-amplified breast cancer cell lines SK-BR-3, which is sensitive to Her2 inhibitors, and AU565, which is resistant. AA increased lipid peroxidation, 4-HNE generation, apoptosis, cellular dox concentration and dox cytotoxicity in both cell lines while sparing cultured immortalized cardiomyocyte cells. The known functions of Rlip including clathrin-dependent endocytosis and dox efflux were inhibited by AA. Our results support a model in which 4-HNE generated by AA overwhelms the capacity of Rlip to defend against apoptosis caused by dox or 4-HNE. We propose that Ω-6 PUFA supplementation could improve the efficacy of dox or Rlip inhibitors for treating Her2-amplified breast cancer.

18.
Cancers (Basel) ; 13(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34283045

RESUMO

We recently reported that loss of one or both alleles of Ralbp1, which encodes the stress-protective protein RLIP76 (Rlip), exerts a strong dominant negative effect on both the inherent cancer susceptibility and the chemically inducible cancer susceptibility of mice lacking one or both alleles of the tumor suppressor p53. In this paper, we examined whether congenital Rlip deficiency could prevent genetically-driven breast cancer in two transgenic mouse models: the MMTV-PyVT model, which expresses the polyomavirus middle T antigen (PyVT) under control of the mouse mammary tumor virus promoter (MMTV) and the MMTV-Erbb2 model which expresses MMTV-driven erythroblastic leukemia viral oncogene homolog 2 (Erbb2, HER2/Neu) and frequently acquires p53 mutations. We found that loss of either one or two Rlip alleles had a suppressive effect on carcinogenesis in Erbb2 over-expressing mice. Interestingly, Rlip deficiency did not affect tumor growth but significantly reduced the lung metastatic burden of breast cancer in the viral PyVT model, which does not depend on either Ras or loss of p53. Furthermore, spontaneous tumors of MMTV-PyVT/Rlip+/+ mice showed no regression following Rlip knockdown. Finally, mice lacking one or both Rlip alleles differentially expressed markers for apoptotic signaling, proliferation, angiogenesis, and cell cycling in PyVT and Erbb2 breast tumors. Our results support the efficacy of Rlip depletion in suppressing p53 inactivated cancers, and our findings may yield novel methods for prevention or treatment of cancer in patients with HER2 mutations or tumor HER2 expression.

19.
Cells ; 10(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34831336

RESUMO

The purpose of our study is to understand the role of the RALBP1 gene in oxidative stress (OS), mitochondrial dysfunction and cognition in Alzheimer's disease (AD) pathogenesis. The RALPB1 gene encodes the 76 kDa protein RLIP76 (Rlip). Rlip functions as a stress-responsive/protective transporter of glutathione conjugates (GS-E) and xenobiotic toxins. We hypothesized that Rlip may play an important role in maintaining cognitive function. The aim of this study is to determine whether Rlip deficiency in mice is associated with AD-like cognitive and mitochondrial dysfunction. Brain tissue obtained from cohorts of wildtype (WT) and Rlip+/- mice were analyzed for OS markers, expression of genes that regulate mitochondrial fission/fusion, and synaptic integrity. We also examined mitochondrial ultrastructure in brains obtained from these mice and further analyzed the impact of Rlip deficiency on gene networks of AD, aging, stress response, mitochondrial function, and CREB signaling. Our studies revealed a significant increase in the levels of OS markers and alterations in the expression of genes and proteins involved in mitochondrial biogenesis, dynamics and synapses in brain tissues from these mice. Furthermore, we compared the cognitive function of WT and Rlip+/- mice. Behavioral, basic motor and sensory function tests in Rlip+/- mice revealed cognitive decline, similar to AD. Gene network analysis indicated dysregulation of stress-activated gene expression, mitochondrial function and CREB signaling genes in the Rlip+/- mouse brain. Our results suggest that Rlip deficiency-associated increases in OS and mitochondrial dysfunction could contribute to the development or progression of OS-related AD processes.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteínas Ativadoras de GTPase/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Comportamento Animal , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Proteínas Ativadoras de GTPase/deficiência , Regulação da Expressão Gênica , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/genética , Modelos Biológicos , Biogênese de Organelas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Sinapses/genética
20.
Microorganisms ; 8(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003447

RESUMO

Dietary factors modulate interactions between the microbiome, metabolome, and immune system. Sulforaphane (SFN) exerts effects on aging, cancer prevention and reducing insulin resistance. This study investigated effects of SFN on the gut microbiome and metabolome in old mouse model compared with young mice. Young (6-8 weeks) and old (21-22 months) male C57BL/6J mice were provided regular rodent chow ± SFN for 2 months. We collected fecal samples before and after SFN administration and profiled the microbiome and metabolome. Multi-omics datasets were analyzed individually and integrated to investigate the relationship between SFN diet, the gut microbiome, and metabolome. The SFN diet restored the gut microbiome in old mice to mimic that in young mice, enriching bacteria known to be associated with an improved intestinal barrier function and the production of anti-inflammatory compounds. The tricarboxylic acid cycle decreased and amino acid metabolism-related pathways increased. Integration of multi-omic datasets revealed SFN diet-induced metabolite biomarkers in old mice associated principally with the genera, Oscillospira, Ruminococcus, and Allobaculum. Collectively, our results support a hypothesis that SFN diet exerts anti-aging effects in part by influencing the gut microbiome and metabolome. Modulating the gut microbiome by SFN may have the potential to promote healthier aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA