Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Biopolymers ; 114(12): e23568, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846654

RESUMO

Currently, conventional plastics are necessary for a variety of aspects of modern daily life, including applications in the fields of healthcare, technology, and construction. However, they could also contain potentially hazardous compounds like isocyanates, whose degradation has a negative impact on both the environment and human health. Therefore, researchers are exploring alternatives to plastic which is sustainable and environmentally friendly without compromising its mechanical and physical features. This review study highlights the production of highly eco-friendly bioplastic as an efficient alternative to non-biodegradable conventional plastic. Bioplastics are produced from various renewable biomass sources such as plant debris, fatty acids, and oils. Poly-addition of di-isocyanates and polyols is a technique employed over decades to produce polyurethanes (PUs) bioplastics from renewable biomass feedstock. The toxicity of isocyanates is a major concern with the above-mentioned approach. Novel green synthetic approaches for polyurethanes without using isocyanates have been attracting greater interest in recent years to overcome the toxicity of isocyanate-containing raw materials. The polyaddition of cyclic carbonates (CCs) and polyfunctional amines appears to be the most promising method to obtain non-isocyanate polyurethanes (NIPUs). This method results in the creation of polymeric materials with distinctive and adaptable features with the elimination of harmful compounds. Consequently, non-isocyanate polyurethanes represent a new class of green polymeric materials. In this review study, we have discussed the possibility of creating novel NIPUs from renewable feedstocks in the context of the growing demand for efficient and ecologically friendly plastic products.


Assuntos
Isocianatos , Poliuretanos , Humanos , Biopolímeros , Aminas , Biomassa
2.
Phys Chem Chem Phys ; 22(36): 20167-20188, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966418

RESUMO

Polymer blending is an effective method that can be used to fabricate new versatile materials with enhanced properties. The blending of two polymers can result in either a miscible or an immiscible polymer blend system. This present review provides an in-depth summary of the miscibility of LCST polymer blend systems, an area that has garnered much attention in the past few years. The initial discourse of the present review mainly focuses on process-induced changes in the miscibility of polymer blend systems, and how the preparation of polymer blends affects their final properties. This review further highlights how nanoparticles induce miscibility and describes the various methods that can be implemented to avoid nanoparticle aggregation. The concepts and different state-of-the-art experimental methods which can be used to determine miscibility in polymer blends are also highlighted. Lastly, the importance of studying miscible polymer blends is extensively explored by looking at their importance in barrier materials, EMI shielding, corrosion protection, light-emitting diodes, gas separation, and lithium battery applications. The primary goal of this review is to cover the journey from the fundamental aspects of miscible polymer blends to their applications.

3.
Phys Chem Chem Phys ; 21(9): 5068-5077, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30762850

RESUMO

A manganese based spinel ferrite, chemically modified with polymethyl methacrylate (PMMA) and polyaniline (PANI) are synthesized and their composites are used as electromagnetic interference (EMI) shielding materials. X-ray diffraction studies show that the as-prepared manganese ferrite crystallizes in a cubic spinel structure. The particles are highly agglomerated and nanocrystalline as indicated by transmission electron microscopy. Manganese exists in +2 and +4 oxidation states and Fe in +2 and +3 oxidation states. Modified manganese ferrite and polyaniline composites in different weight ratios are evaluated for their EMI shielding properties. It is observed that composites containing the PMMA modified ferrite show enhanced total shielding effectiveness (SET) compared to those containing the unmodified ferrite in the X band frequency range (8-12 GHz). The optimized ratio of the PMMA modified ferrite and PANI demonstrates SET values as high as ∼44 dB in the X band frequency range.

4.
Phys Chem Chem Phys ; 20(38): 24821-24831, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30229767

RESUMO

The effect of methylene blue (MB) modified multiwall carbon nanotubes (MWNTs) on the nucleation and morphology of polyvinylidene fluoride (PVDF) in comparison with the effect of MWNTs was systematically assessed by DSC, 13C NMR, FT-IR, TEM, WAXS and SAXS analysis. TEM analysis of ultra-microtomed samples revealed that MB modification enhanced the dispersibility of MWNTs in PVDF. Further, the nanocomposites were subjected to mechanical rolling and the synergistic effect of processing and fillers on the PVDF morphology (before and after rolling) at different length scales was studied. Both FT-IR and WAXS analyses suggested that mechanical rolling transforms α-PVDF to ß-PVDF (ca. 88%). TEM and two-dimensional WAXS analyses revealed that the MWNTs and ß-crystallites are oriented preferentially along the rolling direction and the degree of orientation is not influenced by the fillers suggesting that crystallite orientation is fully controlled by mechanical rolling. On the other hand, ß-lamellae showed perpendicular orientation with respect to the rolling direction. Unlike ß-crystallites, the ß-lamellar morphology and orientation are highly governed by the fillers as evident from SAXS analysis. Using MWNTs and the MWNT-MB π-complex, we demonstrate that the ß-lamellar morphology and degree of orientation are controlled by the extent of interaction of fillers with PVDF. Interestingly, both ß-lamellar morphology and degree of orientation correlate well with the mechanical properties of the rolled PVDF. More specifically, the dynamic storage modulus of the samples in the rolling direction increases with increasing ß-lamellar morphology and degree of orientation. The present work demonstrates that the polymer-filler interaction plays a crucial role in regulating the processed polymer morphology and can be tuned by appropriately modifying the surface of fillers through either covalent or non-covalent interactions.

5.
Phys Chem Chem Phys ; 20(29): 19470-19485, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29998240

RESUMO

The spatial distribution of nanoparticles in a particular host polymer matrix can be improved by using brush coated nanoparticles. In this work we have grafted styrene-acrylonitrile (SAN) onto the surface of graphene oxide (GO) and investigated as to how the demixing temperature, morphology and volume cooperativity of PMMA/SAN blends are influenced. Grafting of polymer chains on the surface of nanoparticles usually involves the use of large amounts of solvents, many which are detrimental to the environment besides involving cumbersome processes. SAN-g-GO was prepared by a robust solvent-free strategy wherein the cyano group in SAN was replaced by oxazoline groups during melt mixing in the presence of zinc acetate and ethanol amine. These newly created oxazoline groups reacted with the COOH group of GO under melt extrusion resulting in grafting of SAN on the surface of GO sheets. The effect of SAN-g-GO nanoparticles on the demixing, local segmental motions and morphology evolution for different annealing times was carefully investigated in a classical LCST system, PMMA/SAN blend, using melt rheology, modulated DSC and AFM, respectively. The changes in viscoelastic behavior in the vicinity of demixing are investigated systematically for the control, and blends with GO and SAN-g-GO. Various models were used to gain insight into the spinodal decomposition temperatures of the blends. Interestingly, the demixing temperature determined rheologically and the spinodal decomposition temperature increased significantly in the presence of polymer grafted nanoparticles in comparison to the control and blends with GO. The evolution of the morphology, interfacial driven coarsening as a function of temperature and the localization of nanoparticles were assessed using atomic force microscopy. The cooperatively re-arranging regions estimated from calorimetric measurements begin to suggest enhanced dynamic heterogeneity in the presence of GO and SAN-g-GO in the blends. Taken together, our study reveals that the solvent-free approach of grafting SAN onto GO delays demixing, suppresses coalescence and alters cooperative relaxation in PMMA/SAN blends.

6.
Nanotechnology ; 28(2): 025201, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-27905322

RESUMO

The need of today's highly integrated electronic devices, especially working in the GHz frequencies, is to protect them from unwanted interference from neighbouring devices. Hence, lightweight, flexible, easy to process microwave absorbers were designed here by dispersing conductive multiwall carbon nanotubes (MWNTs) and silver nanoparticles decorated onto two-dimensional graphene sheets (rGO@Ag) in poly(ε-caprolactone) (PCL). In this study, we have shown how dielectric losses can be tuned in the nanocomposites by rGO@Ag nano-hybrid; an essential criterion for energy dissipation within a material resulting in effective shielding of the incoming electromagnetic (EM) radiation. Herein, the conducting pathway for nomadic charge transfer in the PCL matrix was established by MWNTs and the attenuation was tuned by multiple scattering due to the large specific surface area of rGO@Ag. The latter was possible because of the fine dispersion state of the Ag nanoparticles which otherwise often agglomerate if mixed separately. The effect of individual nanoparticles on microwave attenuation was systematically assessed here. It was observed that this strategy resulted in strikingly enhanced microwave attenuation in PCL nanocomposites in contrast to addition of individual particles. For instance, PCL nanocomposites containing both MWNTs and rGO@Ag manifested in a SET of -37 dB and, interestingly, at arelatively smaller fraction. The SE shown by this particular composite makes it a potential candidate for many commercial applications as reflected by its exceptional absorption capability (91.3%).

7.
Phys Chem Chem Phys ; 19(23): 15424-15432, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28580482

RESUMO

We have used mesoscale simulations to study the effect of immobile particles on microstructure formation during spinodal decomposition in ternary mixtures such as polymer blends. Specifically, we have explored a regime of interparticle spacings (which are a few times the characteristic spinodal length scale) in which we might expect interesting new effects arising from interactions among wetting, spinodal decomposition and coarsening. In this paper, we report three new effects for systems in which the particle phase has a strong preference for being wetted by one of the components (say, A). In the presence of particles, microstructures are not bicontinuous in a symmetric mixture. An asymmetric mixture, on the other hand, first forms a non-bicontinuous microstructure which then evolves into a bicontinuous one at intermediate times. Moreover, while wetting of the particle phase by the preferred component (A) creates alternating A-rich and B-rich layers around the particles, curvature-driven coarsening leads to shrinking and disappearance of the first A-rich layer, leaving a layer of the non-preferred component in contact with the particle. At late simulation times, domains of the matrix components coarsen following the Lifshitz-Slyozov-Wagner law, R1(t) ∼ t1/3.

8.
Phys Chem Chem Phys ; 19(36): 24961-24970, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28875192

RESUMO

We propose a unique contact-free droplet based architecture in which thermally induced instabilities can be used to precisely alter the phase separation behavior in a dynamically asymmetric polymer blend (solution of PS/PVME in toluene) by controlling the external heating rates and concentration of added nanoparticles (multi-walled carbon nanotube particles, MWCNTs). In addition, by tuning the heating rates, distinctly different macroscopic morphologies (hollow shell or globular mass) can be obtained as a final structure in such droplets. Furthermore, the process of separation is temporally aggravated by several orders (about 3-5 orders) as compared to the traditional bulk processing techniques (thin film of blends). Faster production rate and high throughput promise a new spray-based architecture for producing phase separated structures. Addition of MWCNTs in the polymer blend delays the separation phenomenon as it interacts with the polymers and alters the stability criteria. Furthermore, addition of nanoparticles also introduces a different mode of instability at higher external heating rates. Heat accumulation due to particles causes boiling of the solvent (toluene) trapped inside the droplet which leads to subsequent explosion of the entire droplet, in addition to the phase separation phenomena (at the microscopic level). Volumetric expansion due to bubble growth leads to the formation of a unique hollow structure which is distinctly different from the globular mass obtained at lower heating rates.

9.
Phys Chem Chem Phys ; 19(34): 23268-23279, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28825735

RESUMO

Homogenously dispersed nanoparticles having a magnetic core and graphitic-carbon shells in amorphous carbon globules are prepared using a low-cost pyrolysis technique. Synergetic microwave absorption in carbon globules embedded with nanoscale iron/iron-carbide graphite (FeC) particles via dielectric, magnetic and Ohmic losses is emphasized in this work. The electromagnetic interference (EMI) shielding properties of the FeC nanoparticles dispersed in polyvinylidene fluoride (PVDF) are studied in the 8-18 GHz frequency range and compared with those of PVDF composites containing similar weight fractions of conducting/magnetic phase micro-particles such as carbonyl iron (CI) or electrolytic iron (EI) or a similar amount of amorphous carbon phase such as amorphous carbon (a-C) globules. The PVDF/FeC composite shows a maximum SET value of -23.9 dB at 18 GHz, as compared to the SET for the other composites. The enhanced EMI shielding in the PVDF/FeC composite is attributed to the increased interfaces of the nanoscale particles, which facilitate enhanced Maxwell-Wagner interfacial polarization. The homogenous dispersion of iron and iron-carbide phases in the carbon matrix of the FeC sample enhances the interfacial polarization and multiple internal scattering of the penetrated EM waves, which get synergistically attenuated by the Ohmic, magnetic and dielectric losses. Based on complex permittivity and permeability results we have calculated the Reflection Loss (RL) of the PVDF/FeC composite. The PVDF-FeC composite shows a RL peak of -40.5 dB for a 4.3 mm thick specimen positioned at 5 GHz frequency. The RL peak is explained using the quarter-wave cancellation model. Our work demonstrates that incorporating carbon globules containing nanoscale magnetic and conducting particles in a polymer matrix, provides an effective way to enhance EMI shielding via absorption of the EM wave in a lightweight thin composite coating.

10.
Phys Chem Chem Phys ; 18(1): 47-64, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26601893

RESUMO

The use of copolymer and polymer blends widened the possibility of creating materials with multilayered architectures. Hierarchical polymer systems with a wide array of micro and nanostructures are generated by thermally induced phase separation (TIPS) in partially miscible polymer blends. Various parameters like the interaction between the polymers, concentration, solvent/non-solvent ratio, and quenching temperature have to be optimized to obtain these micro/nanophase structures. Alternatively, the addition of nanoparticles is another strategy to design materials with desired hetero-phase structures. The dynamics of the polymer nanocomposite depends on the statistical ordering of polymers around the nanoparticle, which is dependent on the shape of the nanoparticle. The entropic loss due to deformation of polymer chains, like the repulsive interactions due to coiling and the attractive interactions in the case of swelling has been highlighted in this perspective article. The dissipative particle dynamics has been discussed and is correlated with the molecular dynamics simulation in the case of polymer blends. The Cahn-Hillard-Cook model on variedly shaped immobile fillers has shown difference in the propagation of the composition wave. The nanoparticle shape has a contributing effect on the polymer particle interaction, which can change the miscibility window in the case of these phase separating polymer blends. Quantitative information on the effect of spherical particles on the demixing temperature is well established and further modified to explain the percolation of rod shaped particles in the polymer blends. These models correlate well with the experimental observations in context to the dynamics induced by the nanoparticle in the demixing behavior of the polymer blend. The miscibility of the LCST polymer blend depends on the enthalpic factors like the specific interaction between the components, and the solubility product and the entropic losses occurring due to the formation of any favorable interactions. Hence, it is essential to assess the entropic and enthalpic interactions induced by the nanoparticles independently. The addition of nanoparticles creates heterogeneity in the polymer phase it is localized. This can be observed as an alteration in the relaxation behavior of the polymer. This changes the demixing behavior and the interaction parameter between the polymers. The compositional changes induced due to the incorporation of nanoparticles are also attributed as a reason for the altered demixing temperature. The particle shape anisotropy causes a direction dependent depletion, which changes the phase behavior of the blend. The polymer-grafted nanoparticles with varying grafting density show tremendous variation in the miscibility of the blend. The stretching of the polymer chains grafted on the nanoparticles causes an entropy penalty in the polymer blend. A comparative study on the different shaped particles is not available up to date for understanding these aspects. Hence, we have juxtaposed the various computational studies on nanoparticle dynamics, the shape effect of NPs on homopolymers and also the cases of various polymer blends without nanoparticles to sketch a complete picture on the effect of various particles on the miscibility of LCST blends.

11.
Phys Chem Chem Phys ; 18(47): 32477-32485, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27869260

RESUMO

We report thermally induced rapid phase separation in PS/PVME polymer blends using a unique contact free droplet based architecture. De-mixing of homogeneous blends due to inter component dynamic asymmetry is aggravated by the externally supplied heat. Separation of polymer blends is usually investigated in the bulk which is a tedious process and requires several hours for completion. Alternatively, separation in droplet configuration reduces the process timescale by about 3-5 orders due to a constrained micron-sized domain [fast processing and high throughput] while maintaining similar separation morphologies as in the bulk. We observed the effect of heating rates on the phase separation length and timescales. Furthermore, the separation length scale can be precisely controlled across one order by simply tuning the heating rate. The methodology can be scaled up for applications ranging from surface patterning to pharmaceutics.

12.
Phys Chem Chem Phys ; 19(1): 467-479, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27905588

RESUMO

The effect of phase specific localisation of MWNTs (multiwalled carbon nanotubes) and magnetic FeNi (iron-nickel) alloy particles on bulk electrical conductivity and electromagnetic (EM) wave attenuation was investigated in biphasic co-continuous blends of PVDF/SMA (polyvinylidene fluoride/styrene maleic anhydride). It is envisaged that packing different functional nanoparticles in a given phase of a co-continuous blend can impede the charge transport phenomenon and the overall dispersion state. Therefore, phase specific localisation can facilitate the tuning of the functional properties in biphasic blends. This strategy was adopted here wherein conducting MWNTs and magnetic FeNi particles were surface tailored to position them in different phases during processing. As the functional particles prefer the PVDF phase by virtue of thermodynamics, by harnessing amine functional moieties on the surface, their localisation can be tuned to position them in the SMA phase (due to amine-anhydride coupling). This was achieved by sequential mixing during processing. For the best combination, SET was observed to be -23 dB when MWNTs were localised in the SMA phase and magnetic particles in the PVDF phase of the blend with an impressive 92% absorption of the incident EM radiation.

13.
Phys Chem Chem Phys ; 18(42): 29226-29238, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27731428

RESUMO

In this study we have assessed, using dielectric relaxation spectroscopy (DRS), the confinement effects of the more mobile chain in partially miscible polymeric blends of PS/PVME (polystyrene/poly(vinyl methyl ether)) in the presence of anisotropically shaped MWCNTs (multiwalled carbon nanotubes). To understand if this confinement effect is very specific to MWCNTs, the characteristic dimensions of which are often close to the radius of gyration of the polymeric chains, a few other particles like spherical silver, stacked clay tactoids and platy graphene sheets at similar weight fractions were also incorporated and systematically studied. The DRS studies reveal that the more mobile chain (here PVME) experiences possibly two different environments in the presence of frozen PS and more importantly in the presence of MWCNTs at temperatures close to and not so far from the blend Tg. The presence of bimodal relaxations with a weak temperature independent faster relaxation in the blends is composition dependent (PS rich blends). Assuming that there are no chemical interactions of PVME with the particles, these confinement effects seem to be very specific to MWCNTs as the bimodal relaxations were completely absent in the case of other nanoparticles. In the case of polymer blends, when two different chains are brought together, a loss in the deformational entropy is expected due to the excluded volume interaction and chain connectivity effects. In the presence of nanoparticles, especially MWCNTs, the polymer coils are subjected to perturbation leading to entropic loss in the system, which determine the miscibility in the blends. The configurational entropy near glass transition was assessed to understand the improved miscibility due to MWCNTs in this particular blend. The length of cooperativity suggests a cooperative motion of PS and PVME over shorter length scales in the case of MWCNTs as compared to other particles. This also hints at perturbed PVME motion in the network of MWCNTs. Taken together, our study reveals that the kinetic PVME arrest results in two different environments and is dependent on the effective concentration of MWCNTs in the blends.

14.
Phys Chem Chem Phys ; 17(22): 14972-85, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25982342

RESUMO

The demixing behavior, transient morphologies and mechanism of phase separation in PS/PVME blends were greatly altered in the presence of a very low concentration of rod-like particles (multiwall carbon nanotubes, MWNTs). This phenomenon is due to the specific interaction of one of the phases (PVME) with the anisotropic MWNTs, which creates a heterogeneous environment in the blend. This specific interaction alters the chain dynamics in the interfacial region as against the bulk. A comprehensive analysis using isochronal temperature sweep was performed to understand the demixing temperature in the blends. The evolution of phase morphology as a function of time and temperature was assessed by polarizing optical microscopy (POM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The addition of MWNTs increased the rheological demixing temperature and the spinodal temperature in almost all the compositions. The intriguing transient morphologies were mapped, which varied from nucleation and growth to coalescence-induced viscoelastic phase separation (C-VPS) in PVME-rich blends, to spinodal decomposition in the near-critical compositions, to transient gel-induced VPS (T-VPS) in the PS-rich compositions. Mapping of the morphology development displayed two types of fracture mechanisms: ductile fracture for near-critical compositions and brittle fracture for off-critical composition. The change in the phase separation mechanism in the presence of MWNTs was due to the variation in dynamic asymmetry brought about by these anisotropic particles. All these observations were correlated by POM, SEM and AFM studies. The length of the cooperatively rearranging region (CRR), as evaluated using modulated differential scanning calorimetry (MDSC) measurements, was found to be composition-independent. The observed variation of effective glass transition of PVME (low Tg component) on blending with PS (high Tg component) and by the addition of MWNTs accounts for the dynamic heterogeneity introduced by MWNTs in the system.

15.
Phys Chem Chem Phys ; 17(12): 7907-13, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25721659

RESUMO

In this study, branched poly(ethyleneimine), BPEI, was synthesized from carboxylic acid terminated multi-walled carbon nanotubes (c-MWNTs) and characterized using FTIR, TEM and TGA. The BPEI was then chemically grafted onto MWNTs to enhance the interfacial adhesion with the epoxy matrix. The epoxy composites with c-MWNTs and the BPEI-g-MWNTs were prepared using a sonication and mechanical stirring method, followed by curing at 100 °C and post-curing at 120 °C. The dynamic mechanical thermal analysis showed an impressive 49% increment in the storage elastic modulus in the composites. In addition, the nanoindentation on the composites exhibited significant improvement in the hardness and decrease in the plasticity index in the presence of the BPEI-g-MWNTs. Thus, epoxy composites with BPEI-g-MWNTs can be further explored as self-healing materials.

16.
Phys Chem Chem Phys ; 17(22): 14470-8, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25985750

RESUMO

Nanoparticles of different shapes can induce peculiar morphologies in binary polymer blends depending on their position. It is envisaged that the increased yield stress of the filled phase slows down the relaxation resulting in arresting the peculiar morphologies which otherwise is thermodynamically unfavourable due to the increased interfacial area. This essentially means that the highly irregular structures can be preserved even without altering the interfacial tension between the phases! On the other hand, in the case of interfacially adsorbed particles, the resulting solid-like interface can also preserve the irregular structures. These phenomenal transitions in filled blends are very different from the classical copolymer compatibilized polymer blends. Moreover, these irregular structures can further pave way in designing conducting polymer blends involving conducting nanoparticles and revisiting our understanding of the concept of double percolation!

17.
Phys Chem Chem Phys ; 17(22): 14856-65, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25981975

RESUMO

A unique approach was adopted to drive the multiwall carbon nanotubes (MWNTs) to the interface of immiscible PVDF-ABS blends by wrapping the nanotubes with a mutually miscible homopolymer (PMMA). A tailor made interface with an improved stress transfer was achieved in the blends with PMMA wrapped MWNTs. This manifested in an impressive 108% increment in the tensile strength and 48% increment in the Young's modulus with 3 wt% PMMA wrapped MWNTs in striking contrast to the neat blends. As the PMMA wrapped MWNTs localized at the interface of PVDF-ABS blends, the electrical conductivity could be tuned with respect to only MWNTs, which were selectively localized in the PVDF phase, driven by thermodynamics. The electromagnetic shielding properties were assessed using a vector network analyser in a broad range of frequency, X-band (8-12 GHz) and Ku-band (12-18 GHz). Interestingly, enhanced EM shielding was achieved by this unique approach. The blends with only MWNTs shielded the EM waves mostly by reflection however, the blends with PMMA wrapped MWNTs (3 wt%) shielded mostly by absorption (62%). This study opens new avenues in designing materials, which show simultaneous improvement in mechanical, electrical conductivity and EM shielding properties.

18.
Phys Chem Chem Phys ; 17(22): 14922-30, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25981455

RESUMO

Electromagnetic interference shielding (EMI) materials were designed using PC (polycarbonate)/SAN [poly(styrene-co-acrylonitrile)] blends containing few-layered graphene nanosheets decorated with nickel nanoparticles (G-Ni). The graphene nanosheets were decorated with nickel nanoparticles via the uniform nucleation of the metal salt precursor on graphene sheets as the substrate. In order to localize the nanoparticles in the PC phase of the PC/SAN blends, a two-step mixing protocol was adopted. In the first step, graphene sheets were mixed with PC in solution and casted into a film, followed by dilution of these PC master batch films with SAN in the subsequent melt extrusion step. The dynamic mechanical properties, ac electrical conductivity, EMI shielding effectiveness and thermal conductivity of the composites were evaluated. The G-Ni nanoparticles significantly improved the electrical and thermal conductivity in the blends. In addition, a total shielding effectiveness (SET) of -29.4 dB at 18 GHz was achieved with G-Ni nanoparticles. Moreover, the blends with G-Ni exhibited an impressive 276% higher thermal conductivity and 29.2% higher elastic modulus with respect to the neat blends.

19.
Phys Chem Chem Phys ; 17(41): 27698-712, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26431367

RESUMO

Nanoscale ordering in a polymer blend structure is indispensable to obtain materials with tailored properties. It was established here that controlling the arrangement of nanoparticles, with different characteristics, in co-continuous PC/PVDF (polycarbonate/poly(vinylidene fluoride)) blends can result in outstanding microwave absorption (ca. 90%). An excellent reflection loss (RL) of ca. -71 dB was obtained for a model blend structure wherein the conducting (multiwall carbon nanotubes, MWNTs) and the magnetic inclusions (Fe3O4) are localized in PVDF and the dielectric inclusion (barium titanate, BT) is in PC. The MWNTs were modified using polyaniline, which facilitates better charge transport in the blends. Furthermore, by introducing surface active groups on BT nanoparticles and changing the macroscopic processing conditions, the localization of BT nanoparticles can be tailored, otherwise BT nanoparticles would localize in the preferred phase (PVDF). In this study, we have shown that by ordered arrangement of nanoparticles, the incoming EM radiation can be attenuated. For instance, when PANI-MWNTs were localized in PVDF, the shielding was mainly through reflection. Now by localizing the conducting inclusion and the magnetic lossy materials in PVDF and the dielectric materials in PC, an outstanding shielding effectiveness of ca. -37 dB was achieved where shielding was mainly through absorption (ca. 90%). Thus, this study clearly demonstrates that lightweight microwave absorbers can be designed using polymer blends as a tool.

20.
Phys Chem Chem Phys ; 17(3): 1811-21, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25467969

RESUMO

A unique strategy was adopted here to improve the compatibility between the components of an immiscible polymer blend and strengthen the interface. PMMA, a mutually miscible polymer to both PVDF and ABS, improved the compatibility between the phases by localizing at the blends interface. This was supported by the core-shell formation with PMMA as the shell and ABS as the core as observed from the SEM micrographs. This phenomenon was strongly contingent on the concentration of PMMA in the blends. This strategy was further extended to localize graphene oxide (GO) sheets at the blends interface by chemically coupling it to PMMA (PMMA-g-GO). A dramatic increment of ca. 84% in the Young's modulus and ca. 124% in the yield strength was observed in the presence of PMMA-g-GO with respect to the neat blends. A simultaneous increment in both the strength and the modulus was observed in the presence of PMMA-g-GO whereas, only addition of GO resulted in a moderate improvement in the yield strength. This study reveals that a mutually miscible polymer can render compatibility between the immiscible pair and can improve the stress transfer at the interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA