Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 36(2): 731-43, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25339617

RESUMO

Functional magnetic resonance imaging (fMRI) activation detection within stimulus-based experimental paradigms is conventionally based on the assumption that activation effects remain constant over time. This assumption neglects the fact that the strength of activation may vary, for example, due to habituation processes or changing attention. Neither the functional form of time variation can be retrieved nor short-lasting effects can be detected by conventional methods. In this work, a new dynamic approach is proposed that allows to estimate time-varying effect profiles and hemodynamic response functions in event-related fMRI paradigms. To this end, we incorporate the time-varying coefficient methodology into the fMRI general regression framework. Inference is based on a voxelwise penalized least squares procedure. We assess the strength of activation and corresponding time variation on the basis of pointwise confidence intervals on a voxel level. Additionally, spatial clusters of effect curves are presented. Results of the analysis of an active oddball experiment show that activation effects deviating from a constant trend coexist with time-varying effects that exhibit different types of shapes, such as linear, (inversely) U-shaped or fluctuating forms. In a comparison to conventional approaches, like classical SPM, we observe that time-constant methods are rather insensitive to detect temporary effects, because these do not emerge when aggregated across the entire experiment. Hence, it is recommended to base activation detection analyses not merely on time-constant procedures but to include flexible time-varying effects that harbour valuable information on individual response patterns.


Assuntos
Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos , Processamento de Sinais Assistido por Computador , Percepção Auditiva , Encéfalo/irrigação sanguínea , Hemodinâmica , Humanos , Masculino , Fatores de Tempo
2.
PLoS One ; 12(2): e0171918, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28235092

RESUMO

Along with the global climate change, there is an increasing interest for its effect on phenological patterns such as start and end of the growing season. Scientific digital webcams are used for this purpose taking every day one or more images from the same natural motive showing for example trees or grassland sites. To derive phenological patterns from the webcam images, regions of interest are manually defined on these images by an expert and subsequently a time series of percentage greenness is derived and analyzed with respect to structural changes. While this standard approach leads to satisfying results and allows to determine dates of phenological change points, it is associated with a considerable amount of manual work and is therefore constrained to a limited number of webcams only. In particular, this forbids to apply the phenological analysis to a large network of publicly accessible webcams in order to capture spatial phenological variation. In order to be able to scale up the analysis to several hundreds or thousands of webcams, we propose and evaluate two automated alternatives for the definition of regions of interest, allowing for efficient analyses of webcam images. A semi-supervised approach selects pixels based on the correlation of the pixels' time series of percentage greenness with a few prototype pixels. An unsupervised approach clusters pixels based on scores of a singular value decomposition. We show for a scientific webcam that the resulting regions of interest are at least as informative as those chosen by an expert with the advantage that no manual action is required. Additionally, we show that the methods can even be applied to publicly available webcams accessed via the internet yielding interesting partitions of the analyzed images. Finally, we show that the methods are suitable for the intended big data applications by analyzing 13988 webcams from the AMOS database. All developed methods are implemented in the statistical software package R and publicly available in the R package phenofun. Executable example code is provided as supplementary material.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/estatística & dados numéricos , Fotografação/instrumentação , Clima , Mudança Climática , Ecossistema , Pradaria , Humanos , Reconhecimento Automatizado de Padrão/métodos , Fotografação/métodos , Análise Espaço-Temporal , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA