Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 321(3): F305-F321, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34282956

RESUMO

Although vasopressin V1B receptor (V1BR) mRNA has been detected in the kidney, the precise renal localization as well as pharmacological and physiological properties of this receptor remain unknown. Using the selective V1B agonist d[Leu4, Lys8]VP, either fluorescent or radioactive, we showed that V1BR is mainly present in principal cells of the inner medullary collecting duct (IMCD) in the male rat kidney. Protein and mRNA expression of V1BR were very low compared with the V2 receptor (V2R). On the microdissected IMCD, d[Leu4, Lys8]VP had no effect on cAMP production but induced a dose-dependent and saturable intracellular Ca2+ concentration increase mobilization with an EC50 value in the nanomolar range. This effect involved both intracellular Ca2+ mobilization and extracellular Ca2+ influx. The selective V1B antagonist SSR149415 strongly reduced the ability of vasopressin to increase intracellular Ca2+ concentration but also cAMP, suggesting a cooperation between V1BR and V2R in IMCD cells expressing both receptors. This cooperation arises from a cross talk between second messenger cascade involving PKC rather than receptor heterodimerization, as supported by potentiation of arginine vasopressin-stimulated cAMP production in human embryonic kidney-293 cells coexpressing the two receptor isoforms and negative results obtained by bioluminescence resonance energy transfer experiments. In vivo, only acute administration of high doses of V1B agonist triggered significant diuretic effects, in contrast with injection of selective V2 agonist. This study brings new data on the localization and signaling pathways of V1BR in the kidney, highlights a cross talk between V1BR and V2R in the IMCD, and suggests that V1BR may counterbalance in some pathophysiological conditions the antidiuretic effect triggered by V2R activation.NEW & NOTEWORTHY Although V1BR mRNA has been detected in the kidney, the precise renal localization as well as pharmacological and physiological properties of this receptor remain unknown. Using original pharmaceutical tools, this study brings new data on the localization and signaling pathways of V1BR, highlights a cross talk between V1BR and V2 receptor (V2R) in the inner medullary collecting duct, and suggests that V1BR may counterbalance in some pathophysiological conditions the antidiuretic effect triggered by V2R activation.


Assuntos
Receptores de Vasopressinas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Vasopressinas/farmacologia , Animais , Arginina Vasopressina/farmacologia , Masculino , Neurofisinas/efeitos dos fármacos , Precursores de Proteínas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Vasopressinas/metabolismo , Vasopressinas/efeitos dos fármacos
2.
Am J Physiol Renal Physiol ; 318(2): F422-F442, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841389

RESUMO

The thick ascending limb of the loop of Henle (TAL) is the first segment of the distal nephron, extending through the whole outer medulla and cortex, two regions with different composition of the peritubular environment. The TAL plays a critical role in the control of NaCl, water, acid, and divalent cation homeostasis, as illustrated by the consequences of the various monogenic diseases that affect the TAL. It delivers tubular fluid to the distal convoluted tubule and thereby affects the function of the downstream tubular segments. The TAL is commonly considered as a whole. However, many structural and functional differences exist between its medullary and cortical parts. The present review summarizes the available data regarding the similarities and differences between the medullary and cortical parts of the TAL. Both subsegments reabsorb NaCl and have high Na+-K+-ATPase activity and negligible water permeability; however, they express distinct isoforms of the Na+-K+-2Cl- cotransporter at the apical membrane. Ammonia and bicarbonate are mostly reabsorbed in the medullary TAL, whereas Ca2+ and Mg2+ are mostly reabsorbed in the cortical TAL. The peptidic hormone receptors controlling transport in the TAL are not homogeneously expressed along the cortical and medullary TAL. Besides this axial heterogeneity, structural and functional differences are also apparent between species, which underscores the link between properties and role of the TAL under various environments.


Assuntos
Córtex Renal/metabolismo , Medula Renal/metabolismo , Alça do Néfron/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Reabsorção Renal , Equilíbrio Hidroeletrolítico , Adaptação Fisiológica , Animais , Evolução Molecular , Humanos , Córtex Renal/anatomia & histologia , Medula Renal/anatomia & histologia , Alça do Néfron/anatomia & histologia , Proteínas de Membrana Transportadoras/genética , Especificidade da Espécie
3.
Eur J Nutr ; 58(1): 315-324, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29242971

RESUMO

PURPOSE: High plasma copeptin, a marker of vasopressin, predicts diabetes mellitus. We tested if copeptin could be suppressed by increased water intake in healthy individuals, and if a water-induced change in copeptin was accompanied by altered concentrations of glucose, insulin or glucagon. METHODS: Thirty-nine healthy individuals underwent, in random order, 1 week of high water intake (3 L/day on top of habitual intake) and 1 week of normal (habitual) fluid intake (control). Fasting plasma concentrations of copeptin, glucose, insulin and glucagon were compared between the ends of both periods. Furthermore, acute copeptin kinetics were mapped for 4 h after ingestion of 1 L of water. RESULTS: After acute intake of 1 L water, copeptin was significantly reduced within 30 min, and reached maximum reduction within 90 min with on average 39% reduction (95% confidence interval (95 CI) 34-45) (p < 0.001) and remained low the entire test period (4 h). One week of increased water intake led to a 15% reduction (95 CI 5-25) (p = 0.003) of copeptin compared to control week. The greatest reduction occurred among subjects with habitually high copeptin and concentrated urine ("water-responders"). Water-responders had significant water-induced reduction of glucagon, but glucose and insulin were unaffected. CONCLUSIONS: Both acute and 1 week extra water intake potently reduced copeptin concentration. In those with the greatest decline (water-responders), who are typically low drinkers with high baseline copeptin, water induced a reduction in fasting glucagon. Long-term trials assessing the effect of water on glucometabolic traits should focus on low-water drinkers with high copeptin concentration.


Assuntos
Glicemia/metabolismo , Glucagon/sangue , Glicopeptídeos/sangue , Insulina/sangue , Água/farmacologia , Adulto , Idoso , Biomarcadores/sangue , Relação Dose-Resposta a Droga , Ingestão de Líquidos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Água/administração & dosagem , Adulto Jovem
4.
Am J Physiol Renal Physiol ; 314(6): F1129-F1137, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357416

RESUMO

Many experimental protocols in rodents require the comparison of groups that are fed different diets. Changes in dietary electrolyte and/or fat content can influence food intake, which can potentially introduce bias or confound the results. Unpalatable diets slow growth or cause weight loss, which is exacerbated by housing the animals in individual metabolic cages or by surgery. For balance studies in mice, small changes in body weight and food intake and low urinary flow can amplify these challenges. Powder food can be administered as gel with the addition of a desired amount of water, electrolytes, drugs (if any), and a small amount of agar. We describe here how the use of gel food to vary water, Na, K, and fat content can reduce weight loss and improve reproducibility of intake, urinary excretion, and blood pressure in rodents. In addition, mild food restriction reduces the interindividual variability and intergroup differences in food intake and associated variables, thus improving the statistical power of an experiment. Finally, we also demonstrate the advantages of using gel food for weight-based drug dosing. These protocols can improve the accuracy and reproducibility of experimental data where dietary manipulations are needed and are especially advisable in rodent studies related to water balance, obesity, and blood pressure.


Assuntos
Ração Animal , Criação de Animais Domésticos/métodos , Pressão Sanguínea , Dieta , Eletrólitos/urina , Eliminação Renal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biomarcadores/urina , Restrição Calórica , Ingestão de Alimentos , Géis , Capacidade de Concentração Renal , Masculino , Camundongos Endogâmicos C57BL , Estado Nutricional , Valor Nutritivo , Ratos Sprague-Dawley , Equilíbrio Hidroeletrolítico , Redução de Peso
5.
Am J Physiol Heart Circ Physiol ; 314(2): H350-H358, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101168

RESUMO

Angiotensin I-converting enzyme (ACE) levels in humans are under strong genetic influence. Genetic variation in ACE has been linked to risk for and progression of cardiovascular and renal diseases. Causality has been documented in genetically modified mice, but the mechanisms underlying causality are not completely elucidated. To further document the vascular and renal consequences of a moderate genetic increase in ACE synthesis, we studied genetically modified mice carrying three copies of the ACE gene (three-copy mice) and littermate wild-type animals (two-copy mice). We investigated peripheral and renal vascular reactivity to angiotensin II and bradykinin in vivo by measuring blood pressure and renal blood flow after intravenous administration and also reactivity of isolated glomerular arterioles by following intracellular Ca2+ mobilization. Carrying three copies of the ACE gene potentiated the systemic and renal vascular responses to angiotensin II over the whole range of peptide concentration tested. Consistently, the response of isolated glomerular afferent arterioles to angiotensin II was enhanced in three-copy mice. In these mice, signaling pathways triggered by endothelial activation by bradykinin or carbachol in glomerular arterioles were also altered. Although the nitric oxide (NO) synthase (NOS)/NO pathway was not functional in arterioles of two-copy mice, in muscular efferent arterioles of three-copy mice NOS3 gene expression was induced and NO mediated the effect of bradykinin or carbachol. These data document new and unexpected vascular consequences of a genetic increase in ACE synthesis. Enhanced vasoconstrictor effect of angiotensin II may contribute to the risk for cardiovascular and renal diseases linked to genetically high ACE levels. NEW & NOTEWORTHY A moderate genetic increase in angiotensin I-converting enzyme (ACE) in mice similar to the effect of the ACE gene D allele in humans unexpectedly potentiates the systemic and renal vasoconstrictor responses to angiotensin II. It also alters the endothelial signaling pathways triggered by bradykinin or carbachol in glomerular efferent arterioles.


Assuntos
Angiotensina II/farmacologia , Pressão Arterial/efeitos dos fármacos , Arteríolas/efeitos dos fármacos , Bradicinina/farmacologia , Glomérulos Renais/irrigação sanguínea , Peptidil Dipeptidase A/biossíntese , Circulação Renal/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia , Animais , Arteríolas/enzimologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Carbacol/farmacologia , Indução Enzimática , Feminino , Genótipo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Peptidil Dipeptidase A/genética , Fenótipo
6.
Am J Physiol Endocrinol Metab ; 312(3): E127-E135, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27998960

RESUMO

Recent epidemiological studies have revealed novel relationships between low water intake or high vasopressin (AVP) and the risk of hyperglycemia and diabetes. AVP V1A and V1B receptors (R) are expressed in the liver and pancreatic islets, respectively. The present study was designed to determine the impact of different levels of circulating AVP on glucose homeostasis in normal Sprague-Dawley rats, as well as the respective roles of V1AR and V1BR. We showed that acute injection of AVP induces a dose-dependent increase in glycemia. Pretreatment with a selective V1AR antagonist, but not a V1BR antagonist, dose-dependently prevented the rise in glycemia. V1BR antagonism did not modify the hyperinsulinemic response, resulting from AVP-induced hyperglycemia, but enhanced the fall in glucagonemia. Acute administration of selective V1AR or V1BR agonists confirmed the involvement of V1AR in the hyperglycemic effect of AVP. In chronic experiments, AVP levels were altered in both directions. Sustained AVP infusion through implantable minipumps induced a time-dependent increase in fasting glycemia, whereas lowering endogenous AVP by increasing water intake had no effect. After 4 wk of AVP infusion, the rise in glycemia amounted to 1.1 mmol/l (P < 0.01) without significant change in insulinemia. This effect was attenuated by cotreatment with a V1AR antagonist. Similar results were observed in lean Zucker rats. These findings demonstrate for the first time a causal link between chronic high AVP and hyperglycemia through V1AR activation and, thus, provide a pathophysiological explanation for the relationship observed in human cohorts between the AVP-hydration axis and the risk of diabetes.


Assuntos
Arginina Vasopressina/farmacologia , Glicemia/efeitos dos fármacos , Glucagon/efeitos dos fármacos , Hiperglicemia/sangue , Receptores de Vasopressinas/efeitos dos fármacos , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Glicemia/metabolismo , Técnicas de Introdução de Genes , Glucagon/sangue , Hiperinsulinismo/sangue , Indóis/farmacologia , Insulina/sangue , Masculino , Imagem Óptica , Pâncreas/metabolismo , Peptídeos Cíclicos/farmacologia , Pirrolidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Receptores de Vasopressinas/agonistas , Receptores de Vasopressinas/metabolismo
7.
Ann Nutr Metab ; 70 Suppl 1: 51-61, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28614828

RESUMO

BACKGROUND: Generally, eating salty food items increases thirst. Thirst is also stimulated by the experimental infusion of hypertonic saline. But, in steady state, does the kidney need a higher amount of water to excrete sodium on a high than on a low sodium intake? This issue is still controversial. The purpose of this review is to provide examples of how the kidney handles water in relation to salt intake/output. It is based on re-analysis of previously published studies in which salt intake was adjusted to several different levels in the same subjects, and in databases of epidemiologic studies in populations on an ad libitum diet. Summary and Key Messages: These re-analyses allow us to draw the following conclusions: (1) In a steady state situation, the urine volume (and thus the fluid intake) remains unchanged over a large range of sodium intakes. The adaptation to a higher sodium excretion rests only on changes in urinary sodium concentration. However, above a certain limit, this concentration cannot increase further and the urine volume may then increase. (2) In population studies, it is not legitimate to assume that sodium is responsible for changes in urine volume, since people who eat more sodium also eat more of other nutrients leading to an increase in the excretion of potassium, urea and other solutes, besides sodium. (3) After an abrupt increase in sodium intake, fluid intake is increased in the first few days, but urine volume does not change. The extra fluid drunk is responsible for an increase in body weight.


Assuntos
Ingestão de Líquidos/fisiologia , Rim/metabolismo , Sódio na Dieta/administração & dosagem , Urina/fisiologia , Humanos , Sódio/urina
8.
Am J Physiol Renal Physiol ; 311(2): F469-86, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194722

RESUMO

It is now recognized that the metabolic disorders observed in diabetes are not, or not only due to the lack of insulin or insulin resistance, but also to elevated glucagon secretion. Accordingly, selective glucagon receptor antagonists are now proposed as a novel strategy for the treatment of diabetes. However, besides its metabolic actions, glucagon also influences kidney function. The glucagon receptor is expressed in the thick ascending limb, distal tubule, and collecting duct, and glucagon regulates the transepithelial transport of several solutes in these nephron segments. Moreover, it also influences solute transport in the proximal tubule, possibly by an indirect mechanism. This review summarizes the knowledge accumulated over the last 30 years about the influence of glucagon on the renal handling of electrolytes and urea. It also describes a possible novel role of glucagon in the short-term regulation of potassium homeostasis. Several original findings suggest that pancreatic α-cells may express a "potassium sensor" sensitive to changes in plasma K concentration and could respond by adapting glucagon secretion that, in turn, would regulate urinary K excretion. By their combined actions, glucagon and insulin, working in a combinatory mode, could ensure an independent regulation of both plasma glucose and plasma K concentrations. The results and hypotheses reviewed here suggest that the use of glucagon receptor antagonists for the treatment of diabetes should take into account their potential consequences on electrolyte handling by the kidney.


Assuntos
Glucagon/farmacologia , Homeostase/efeitos dos fármacos , Rim/efeitos dos fármacos , Potássio/metabolismo , Animais , Humanos
9.
Biol Chem ; 397(12): 1217-1222, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27622831

RESUMO

Genetic and pharmacological studies, clinical and experimental, focused on kallikrein-K1, kinin receptors and ACE/kininase II suggest that kinin release in the settings of ischemia or diabetes reduces organ damage, especially in the heart and kidney. Kinin bioavailability may be a limiting factor for efficacy of current kinin-potentiating drugs, like ACE inhibitors. Primary activation of kinin receptors by prototypic pharmacological agonists, peptidase-resistant, selective B1 or B2, displays therapeutic efficacy in experimental cardiac and peripheral ischemic and diabetic diseases. B1R agonism was especially efficient in diabetic animals and had no unwanted effects. Clinical development of kinin receptor agonists may be warranted.


Assuntos
Diabetes Mellitus/metabolismo , Diabetes Mellitus/terapia , Isquemia/metabolismo , Isquemia/terapia , Sistema Calicreína-Cinina , Animais , Diabetes Mellitus/tratamento farmacológico , Humanos , Isquemia/tratamento farmacológico , Sistema Calicreína-Cinina/efeitos dos fármacos
10.
Am J Nephrol ; 43(4): 281-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27161565

RESUMO

We performed a comprehensive literature review to examine evidence on the effects of hydration on the kidney. By reducing vasopressin secretion, increasing water intake may have a beneficial effect on renal function in patients with all forms of chronic kidney disease (CKD) and in those at risk of CKD. This potential benefit may be greater when the kidney is still able to concentrate urine (high fluid intake is contraindicated in dialysis-dependent patients). Increasing water intake is a well-accepted method for preventing renal calculi, and current evidence suggests that recurrent dehydration and heat stress from extreme occupational conditions is the most probable cause of an ongoing CKD epidemic in Mesoamerica. In polycystic kidney disease (PKD), increased water intake has been shown to slow renal cyst growth in animals via direct vasopressin suppression, and pharmacologic blockade of renal vasopressin-V2 receptors has been shown to slow cyst growth in patients. However, larger clinical trials are needed to determine if supplemental water can safely slow the loss of kidney function in PKD patients.


Assuntos
Estado de Hidratação do Organismo , Insuficiência Renal Crônica/terapia , Água/administração & dosagem , Animais , Progressão da Doença , Humanos , Nefropatias/terapia , Vasopressinas/metabolismo
11.
Clin Sci (Lond) ; 130(1): 45-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26443866

RESUMO

Impaired skin wound healing is a major medical problem in diabetic subjects. Kinins exert a number of vascular and other actions limiting organ damage in ischaemia or diabetes, but their role in skin injury is unknown. We investigated, through pharmacological manipulation of bradykinin B1 and B2 receptors (B1R and B2R respectively), the role of kinins in wound healing in non-diabetic and diabetic mice. Using two mouse models of diabetes (streptozotocin-induced and db/db mice) and non-diabetic mice, we assessed the effect of kinin receptor activation or inhibition by subtype-selective pharmacological agonists (B1R and B2R) and antagonist (B2R) on healing of experimental skin wounds. We also studied effects of agonists and antagonist on keratinocytes and fibroblasts in vitro. Levels of Bdkrb1 (encoding B1R) and Bdkrb2 (encoding B2R) mRNAs increased 1-2-fold in healthy and wounded diabetic skin compared with in non-diabetic skin. Diabetes delayed wound healing. The B1R agonist had no effect on wound healing. In contrast, the B2R agonist impaired wound repair in both non-diabetic and diabetic mice, inducing skin disorganization and epidermis thickening. In vitro, B2R activation unbalanced fibroblast/keratinocyte proliferation and increased keratinocyte migration. These effects were abolished by co-administration of B2R antagonist. Interestingly, in the two mouse models of diabetes, the B2R antagonist administered alone normalized wound healing. This effect was associated with the induction of Ccl2 (encoding monocyte chemoattractant protein 1)/Tnf (encoding tumour necrosis factor α) mRNAs. Thus stimulation of kinin B2 receptor impairs skin wound healing in mice. B2R activation occurs in the diabetic skin and delays wound healing. B2R blockade improves skin wound healing in diabetic mice and is a potential therapeutic approach to diabetic ulcers.


Assuntos
Antagonistas de Receptor B2 da Bradicinina/farmacologia , Bradicinina/análogos & derivados , Complicações do Diabetes/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Receptor B2 da Bradicinina/efeitos dos fármacos , Úlcera Cutânea/tratamento farmacológico , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Bradicinina/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Complicações do Diabetes/etiologia , Complicações do Diabetes/genética , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , RNA Mensageiro/metabolismo , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Úlcera Cutânea/etiologia , Úlcera Cutânea/metabolismo , Úlcera Cutânea/patologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
12.
Diabetologia ; 58(5): 1081-90, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25622862

RESUMO

AIMS/HYPOTHESIS: High plasma copeptin, a marker of vasopressin (VP) secretion, has been shown to be associated with the metabolic syndrome and development of type 2 diabetes in humans. The present study was designed to determine the long-term influence of plasma VP concentration in a rodent model prone to metabolic dysfunction. METHODS: Obese Zucker rats and their lean counterparts were submitted for 4 weeks to one of three protocols inducing different levels of VP. Circulating VP was either reduced by increasing the daily water intake (low-VP), or increased by a chronic i.p. infusion of VP (high-VP). The control rats had normal VP levels that depended on their own regulation of water intake and VP secretion. RESULTS: Compared with controls with normal VP, lean rats with high-VP had a higher fasting glycaemia after 4 weeks. In obese rats, high-VP promoted hyperinsulinaemia, glucose intolerance, assessed by glucose and insulin tolerance tests, and an impaired response to a pyruvate challenge. Conversely, treatment with a selective arginine vasopressin receptor 1A (V1aR) antagonist reduced glucose intolerance. Low-VP obese rats had unchanged glucose tolerance but exhibited a drastic decrease in liver steatosis compared with control obese rats, associated with low hepatic triacylglycerol and cholesterol content, and reduced expression of hepatic lipogenic genes. These effects were independent of changes in body adiposity, and plasma sodium and osmolality did not differ among groups. CONCLUSION/INTERPRETATION: These findings show a causal relationship between the VP-hydration axis and the metabolic risk. Therapeutic perspectives include diet recommendations regarding hydration, but also potential pharmacological interventions targeting the VP V1aR.


Assuntos
Ingestão de Líquidos/fisiologia , Fígado Gorduroso/etiologia , Intolerância à Glucose/etiologia , Obesidade/metabolismo , Vasopressinas/sangue , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Glicemia/metabolismo , Fígado Gorduroso/metabolismo , Intolerância à Glucose/metabolismo , Teste de Tolerância a Glucose , Indóis/farmacologia , Masculino , Pirrolidinas/farmacologia , Ratos Zucker , Vasopressinas/farmacologia
13.
Am J Physiol Renal Physiol ; 309(1): F2-23, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25925260

RESUMO

A single protein-rich meal (or an infusion of amino acids) is known to increase the glomerular filtration rate (GFR) for a few hours, a phenomenon known as "hyperfiltration." It is important to understand the factors that initiate this upregulation because it becomes maladaptive in the long term. Several mediators and paracrine factors have been shown to participate in this upregulation, but they are not directly triggered by protein intake. Here, we explain how a rise in glucagon and in vasopressin secretion, directly induced by protein ingestion, might be the initial factors triggering the hepatic and renal events leading to an increase in the GFR. Their effects include metabolic actions in the liver and stimulation of sodium chloride reabsorption in the thick ascending limb. Glucagon is not only a glucoregulatory hormone. It is also important for the excretion of nitrogen end products by stimulating both urea synthesis in the liver (along with gluconeogenesis from amino acids) and urea excretion by the kidney. Vasopressin allows the concentration of nitrogenous end products (urea, ammonia, etc.) and other protein-associated wastes in a hyperosmotic urine, thus allowing a very significant water economy characteristic of all terrestrial mammals. No hyperfiltration occurs in the absence of one or the other hormone. Experimental results suggest that the combined actions of these two hormones, along with the complex intrarenal handling of urea, lead to alter the composition of the tubular fluid at the macula densa and to reduce the intensity of the signal activating the tubuloglomerular feedback control of GFR, thus allowing GFR to raise. Altogether, glucagon, vasopressin, and urea contribute to set up the best compromise between efficient urea excretion and water economy.


Assuntos
Proteínas Alimentares/metabolismo , Glucagon/fisiologia , Glomérulos Renais/fisiologia , Ureia/metabolismo , Vasopressinas/fisiologia , Animais , AMP Cíclico/metabolismo , Taxa de Filtração Glomerular , Humanos , Fígado/metabolismo , Nitrogênio/metabolismo , Água/metabolismo
14.
J Pharmacol Exp Ther ; 352(2): 218-26, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25398240

RESUMO

Limb ischemia is a major complication of thromboembolic diseases. Diabetes worsens prognosis by impairing neovascularization. Genetic or pharmacological inactivation of the kallikrein-kinin system aggravates limb ischemia in nondiabetic animals, whereas angiotensin I-converting enzyme/kininase II inhibition improves outcome. The role of kinins in limb ischemia in the setting of diabetes is not documented. We assessed whether selective activation of kinin receptors by pharmacological agonists can influence neovascularization in diabetic mice with limb ischemia and have a therapeutic effect. Selective pseudopeptide kinin B1 or B2 receptor agonists resistant to peptidase action were administered by osmotic minipumps at a nonhypotensive dosage for 14 days after unilateral femoral artery ligation in mice previously rendered diabetic by streptozotocin. Comparison was made with ligatured, nonagonist-treated nondiabetic and diabetic mice. Diabetes reduced neovascularization, assessed by microangiography and histologic capillary density analysis, by roughly 40%. B1 receptor agonist or B2 receptor agonist similarly restored neovascularization in diabetic mice. Neovascularization in agonist-treated diabetic mice was indistinguishable from nondiabetic mice. Both treatments restored blood flow in the ischemic hindfoot, measured by laser-Doppler perfusion imaging. Macrophage infiltration increased 3-fold in the ischemic gastrocnemius muscle during B1 receptor agonist or B2 receptor agonist treatment, and vascular endothelial growth factor (VEGF) level increased 2-fold. Both treatments increased, by 50-100%, circulating CD45/CD11b-positive monocytes and CD34(+)/VEGFR2(+) progenitor cells. Thus, selective pharmacological activation of B1 or B2 kinin receptor overcomes the effect of diabetes on postischemic neovascularization and restores tissue perfusion through monocyte/macrophage mobilization. Kinin receptors are potential therapeutic targets in limb ischemia in diabetes.


Assuntos
Diabetes Mellitus Experimental/complicações , Angiopatias Diabéticas/tratamento farmacológico , Membro Posterior/irrigação sanguínea , Isquemia/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Receptor B1 da Bradicinina/agonistas , Receptor B2 da Bradicinina/agonistas , Animais , Bradicinina/administração & dosagem , Bradicinina/análogos & derivados , Bradicinina/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/metabolismo , Isquemia/etiologia , Isquemia/metabolismo , Sistema Calicreína-Cinina/efeitos dos fármacos , Fluxometria por Laser-Doppler , Masculino , Camundongos Endogâmicos C57BL , Fluxo Sanguíneo Regional/efeitos dos fármacos , Estreptozocina/farmacologia
15.
Am J Nephrol ; 42(2): 107-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26346607

RESUMO

BACKGROUND/AIMS: In recent days, chronic kidney disease (CKD) is becoming an increasing public health problem. Identification of factors contributing to its progression is crucial for designing preventive interventions. Previous studies suggested that chronically high vasopressin is deleterious to the renal function. We evaluated plasma copeptin, a surrogate of vasopressin, as a predictor for renal function decline in a community cohort. METHODS: Plasma copeptin was measured at baseline in 1,234 participants from the D.E.S.I.R. study, a prospective cohort from the French general population. All participants were followed for 9 years. Progression towards CKD during follow-up was defined as an estimated glomerular filtration rate (eGFR) below 60 ml/min/1.73 m2 on at least one follow-up visit. We have also considered the criterion 'Certain Drop in eGFR' proposed by the Kidney Disease Improving Global Outcomes (KDIGO) group. RESULTS: Progression towards CKD was observed in 86 (7.0%) participants. Factors like age, female gender, plasma copeptin and use of angiotensin converting enzyme inhibitor or angiotensin 2 receptor blocker at baseline were positively associated, and eGFR inversely associated with CKD progression during follow-up. The hazard ratio per unit of log10-transformed plasma copeptin was 1.65 (95% CI 1.06-2.54) and p=0.02. Copeptin was similarly associated with CKD and this was observed when we considered the KDIGO criterion: OR 3.03 (95% CI 1.21-7.57), p=0.02. CONCLUSION: The plasma copeptin level was independently and positively associated with progression towards CKD in a community-based cohort. Our results add to the available evidence for a deleterious effect of high vasopressin on renal health not only in selected groups of patients with CKD but also in the general population.


Assuntos
Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Taxa de Filtração Glomerular , Glicopeptídeos/sangue , Insuficiência Renal Crônica/sangue , Adulto , Idoso , Estudos de Coortes , Creatinina/metabolismo , Progressão da Doença , Feminino , França/epidemiologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Estudos Prospectivos , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/metabolismo , Fatores Sexuais , Vasopressinas/metabolismo
16.
Ann Nutr Metab ; 66 Suppl 3: 14-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26088041

RESUMO

BACKGROUND: Several experimental studies in rats and a few association studies in humans suggest that the antidiuretic action of vasopressin may accelerate the progression of chronic kidney disease. We undertook a retrospective analysis in a monocentric cohort of 273 patients with chronic kidney disease stages 1-4, focusing on a strong variable of interest, urinary osmolarity, and a strong endpoint, dialysis initiation. Data was analyzed in a multivariate proportional sub-distribution hazards model for competing risk data with appropriate co-variates. MAIN RESULTS: Over a median follow-up period of 92 months, dialysis was initiated in 105 patients. After adjustments for baseline creatinine clearance, and other confounding factors, a higher risk for initiation of dialysis was found in patients with higher urinary osmolarity. After 72 months, the estimated adjusted cumulative incidence probability for dialysis initiation was 15, 24, and 34% in patients with baseline urinary osmolarity of 315, 510, and 775 mosm/l, respectively (p = 0.033). Key Messages: In this retrospective, longitudinal study, a higher baseline urinary osmolarity was strongly associated with a higher risk of end-stage renal disease (after appropriate adjustments). Further, prospective studies are required to evaluate the possible benefit of interventions aiming at reducing urinary osmolarity as a potential treatment for slowing chronic kidney disease progression.


Assuntos
Diálise Renal/estatística & dados numéricos , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/urina , Adulto , Idoso , Creatinina/urina , Progressão da Doença , Feminino , Taxa de Filtração Glomerular , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Concentração Osmolar , Modelos de Riscos Proporcionais , Insuficiência Renal Crônica/etiologia , Estudos Retrospectivos , Fatores de Risco
17.
Prog Drug Res ; 69: 145-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25130042

RESUMO

Genetic manipulation of the kallikrein-kinin system (KKS) in mice, with either gain or loss of function, and study of human genetic variability in KKS components which has been well documented at the phenotypic and genomic level, have allowed recognizing the physiological role of KKS in health and in disease. This role has been especially documented in the cardiovascular system and the kidney. Kinins are produced at slow rate in most organs in resting condition and/or inactivated quickly. Yet the KKS is involved in arterial function and in renal tubular function. In several pathological situations, kinin production increases, kinin receptor synthesis is upregulated, and kinins play an important role, whether beneficial or detrimental, in disease outcome. In the setting of ischemic, diabetic or hemodynamic aggression, kinin release by tissue kallikrein protects against organ damage, through B2 and/or B1 bradykinin receptor activation, depending on organ and disease. This has been well documented for the ischemic or diabetic heart, kidney and skeletal muscle, where KKS activity reduces oxidative stress, limits necrosis or fibrosis and promotes angiogenesis. On the other hand, in some pathological situations where plasma prekallikrein is inappropriately activated, excess kinin release in local or systemic circulation is detrimental, through oedema or hypotension. Putative therapeutic application of these clinical and experimental findings through current pharmacological development is discussed in the chapter.


Assuntos
Doenças Cardiovasculares/genética , Variação Genética , Calicreínas/genética , Nefropatias/genética , Cininas/genética , Animais , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/fisiopatologia , Predisposição Genética para Doença , Humanos , Calicreínas/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/enzimologia , Nefropatias/fisiopatologia , Cininas/metabolismo , Fenótipo , Fármacos Renais/uso terapêutico , Transdução de Sinais
18.
J Cardiovasc Pharmacol ; 63(3): 274-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24220315

RESUMO

Coronary endothelial dysfunction is involved in cardiac ischemia-reperfusion (IR) injury. Vascular endothelial growth factor (VEGF) activates endothelial cells and exerts cardioprotective effects in isolated hearts. The recently discovered viper venom protein called increasing capillary permeability protein (ICPP) exerts VEGF-like effects in endothelial cells. We examined whether VEGF or ICPP can influence IR outcome in vivo in mice. Dosages of VEGF and ICPP were determined by preliminary blood pressure study. In IR, both the proteins administered intravenously at reperfusion reduced infarct size (IS) by 57% for VEGF and 52% for ICPP (P < 0.01). Pretreatment with a selective VEGFR2 receptor antagonist abolished the reduction in IS. VEGF and ICPP induced ERK phosphorylation in the myocardium. IR triggered mitochondrial pore opening and impaired mitochondrial respiratory function. These effects of IR were prevented by VEGF or ICPP, which increased mitochondrial calcium retention capacity by 37% compared with saline (P < 0.05) and improved mitochondrial respiratory function (by 71% and 65%, respectively for state 3, and 51% and 38% for state 4, P < 0.01 for VEGF). Thus, intravenous administration of VEGF or ICPP at reperfusion largely reduces IS in IR, through stimulation of VEGFR2 receptors. This effect is mediated, at least in part, by improvement of IR-induced mitochondrial dysfunction.


Assuntos
Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Proteínas/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Venenos de Víboras/química , Animais , Cálcio/metabolismo , Cardiotônicos/administração & dosagem , Cardiotônicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Proteínas/administração & dosagem , Proteínas/química , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
Clin Exp Pharmacol Physiol ; 41(11): 911-20, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25115485

RESUMO

The Wistar-Furth (WF) rat strain is usually used in models of full major histocompatibility complex-mismatched kidney transplantation. Because these rats have been demonstrated to be resistant to several models of chronic kidney disease, the aim of the present study was to investigate their potential resistance to renal ischaemia-reperfusion (I/R) injury compared with another strain, namely Wistar-Hanover (WH) rats. Anaesthetized male WH and WF rats were submitted to I/R by occlusion of the left renal artery and contralateral nephrectomy. Urine, blood and tissue samples were collected at different time points after I/R to evaluate renal function, inflammation and tubular injury, along with determination of nitric oxide synthase (NOS) expression and thromboxane A2 (TxA2 ) production. Post-ischaemic renal function was better preserved in WF than WH rats, as evidenced by reduced levels of creatininaemia, urinary neutrophil gelatinase-associated lipocalin excretion and proteinuria. In addition, WF rats had less intrarenal inflammation than WH rats after I/R injury. These observations were associated with maintenance of neuronal NOS expression, along with lower induction of inducible NOS expression in WF versus WH rats. Moreover, WF rats excreted a significantly lower amount of TxB2 . The results indicate that WF rats are more resistant to an I/R injury than WH rats in terms of renal function and inflammation. These observations are associated with differential regulation of intrarenal NOS expression, as well as a reduction in thromboxane production, which could contribute to a better outcome for the postischaemic kidney in WF rats.


Assuntos
Modelos Animais de Doenças , Rim/metabolismo , Óxido Nítrico/biossíntese , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Tromboxano A2/biossíntese , Doença Aguda , Animais , Dinoprostona/urina , Rim/irrigação sanguínea , Rim/imunologia , Testes de Função Renal , Masculino , Óxido Nítrico Sintase/genética , Estresse Oxidativo , Ratos Endogâmicos WF , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/urina , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tromboxano B2/urina
20.
J Pharmacol Exp Ther ; 346(1): 23-30, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23591995

RESUMO

Cardiac ischemia is a leading cause of death, especially in diabetic patients. The diabetic ischemic heart is resistant experimentally to established cardioprotective treatments. New pharmacological approaches to cardiac protection are warranted. The kallikrein-kinin system is involved in myocardial protection in ischemia. Respective roles of B1 (B1R) and B2 (B2R) receptors remain controversial. We tested whether pharmacological activation of kinin receptors may have therapeutic effect in cardiac ischemia-reperfusion in nondiabetic (NDiab) and diabetic (Diab) mice. We assessed effect on infarct size (IS) and signaling pathways involved in myocardial protection of potent selective pharmacological agonists of B1R or B2R given at reperfusion. In NDiab mice, a B2R agonist reduced IS significantly by 47%, similarly to ramiprilat or ischemic postconditioning, via activation of phosphoinositide 3 kinase/Akt pathway leading to inhibition of glycogen synthase kinase-3ß (GSK-3ß). B1R agonist had no effect on IS. In contrast, in Diab mice, the B2R agonist, ramiprilat, or ischemic postconditioning failed to reduce IS but a B1R agonist significantly reduced IS by 44% via activation of phosphoinositide 3 kinase/Akt and extracellular signal-regulated kinase 1/2, both leading to GSK-3ß inhibition. Differential effect of B2R or B1R agonists in NDiab and Diab mice can be linked to inactivation of B2R signaling and induction of B1R in heart of Diab mice. Thus, a pharmacological B2R agonist is cardioprotective in acute ischemia in nondiabetic animals. B1R agonist overcomes resistance of diabetic heart to cardioprotective treatments. Pharmacological activation of B1R and B2R may become a treatment for diabetic and nondiabetic patients, respectively, in acute coronary syndromes.


Assuntos
Bradicinina/análogos & derivados , Cardiotônicos/uso terapêutico , Diabetes Mellitus Tipo 1/complicações , Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Receptor B1 da Bradicinina/agonistas , Receptor B2 da Bradicinina/agonistas , Animais , Bradicinina/administração & dosagem , Bradicinina/efeitos adversos , Bradicinina/uso terapêutico , Cardiotônicos/administração & dosagem , Cardiotônicos/efeitos adversos , Diabetes Mellitus Tipo 1/metabolismo , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/complicações , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Receptor B1 da Bradicinina/genética , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA