Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(4): 1070-1085.e12, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33031744

RESUMO

The SARS-CoV-2 pandemic has caused extreme human suffering and economic harm. We generated and characterized a new mouse-adapted SARS-CoV-2 virus that captures multiple aspects of severe COVID-19 disease in standard laboratory mice. This SARS-CoV-2 model exhibits the spectrum of morbidity and mortality of COVID-19 disease as well as aspects of host genetics, age, cellular tropisms, elevated Th1 cytokines, and loss of surfactant expression and pulmonary function linked to pathological features of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). This model can rapidly access existing mouse resources to elucidate the role of host genetics, underlying molecular mechanisms governing SARS-CoV-2 pathogenesis, and the protective or pathogenic immune responses related to disease severity. The model promises to provide a robust platform for studies of ALI and ARDS to evaluate vaccine and antiviral drug performance, including in the most vulnerable populations (i.e., the aged) using standard laboratory mice.


Assuntos
Lesão Pulmonar Aguda/patologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Animais , Betacoronavirus/isolamento & purificação , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Quimiocinas/sangue , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/patologia , Pulmão/fisiologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pandemias , Pneumonia Viral/mortalidade , Pneumonia Viral/virologia , Síndrome do Desconforto Respiratório/patologia , SARS-CoV-2 , Índice de Gravidade de Doença , Taxa de Sobrevida
2.
Cell ; 181(4): 848-864.e18, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32298651

RESUMO

Chronic obstructive pulmonary disease (COPD) is a progressive condition of chronic bronchitis, small airway obstruction, and emphysema that represents a leading cause of death worldwide. While inflammation, fibrosis, mucus hypersecretion, and metaplastic epithelial lesions are hallmarks of this disease, their origins and dependent relationships remain unclear. Here we apply single-cell cloning technologies to lung tissue of patients with and without COPD. Unlike control lungs, which were dominated by normal distal airway progenitor cells, COPD lungs were inundated by three variant progenitors epigenetically committed to distinct metaplastic lesions. When transplanted to immunodeficient mice, these variant clones induced pathology akin to the mucous and squamous metaplasia, neutrophilic inflammation, and fibrosis seen in COPD. Remarkably, similar variants pre-exist as minor constituents of control and fetal lung and conceivably act in normal processes of immune surveillance. However, these same variants likely catalyze the pathologic and progressive features of COPD when expanded to high numbers.


Assuntos
Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Adulto , Idoso , Animais , Feminino , Fibrose/fisiopatologia , Humanos , Inflamação/patologia , Pulmão/metabolismo , Masculino , Metaplasia/fisiopatologia , Camundongos , Pessoa de Meia-Idade , Neutrófilos/imunologia , Pneumonia/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Análise de Célula Única/métodos , Células-Tronco/metabolismo
3.
Cell ; 182(2): 429-446.e14, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32526206

RESUMO

The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-19) remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expression in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-infected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings highlight the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Sistema Respiratório/virologia , Genética Reversa/métodos , Idoso , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/terapia , Fibrose Cística/patologia , DNA Recombinante , Feminino , Furina/metabolismo , Humanos , Imunização Passiva , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Mucosa Nasal/virologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/imunologia , Sistema Respiratório/patologia , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Células Vero , Virulência , Replicação Viral , Soroterapia para COVID-19
4.
Physiol Rev ; 102(4): 1757-1836, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001665

RESUMO

The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.


Assuntos
Fibrose Cística , Doença Pulmonar Obstrutiva Crônica , Fibrose Cística/metabolismo , Humanos , Pulmão/metabolismo , Depuração Mucociliar , Muco/metabolismo
5.
Nature ; 604(7904): 111-119, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355018

RESUMO

Mapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.


Assuntos
Linhagem da Célula , Pulmão , Células-Tronco , Células Epiteliais Alveolares , Animais , Diferenciação Celular , Conectoma , Fibroblastos , Perfilação da Expressão Gênica , Humanos , Pulmão/citologia , Pneumopatias , Camundongos , Organoides , Primatas , Regeneração , Análise de Célula Única , Células-Tronco/citologia
6.
Am J Respir Crit Care Med ; 209(4): 374-389, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016030

RESUMO

Rationale: Non-cystic fibrosis bronchiectasis (NCFB) may originate in bronchiolar regions of the lung. Accordingly, there is a need to characterize the morphology and molecular characteristics of NCFB bronchioles. Objectives: Test the hypothesis that NCFB exhibits a major component of bronchiolar disease manifest by mucus plugging and ectasia. Methods: Morphologic criteria and region-specific epithelial gene expression, measured histologically and by RNA in situ hybridization and immunohistochemistry, identified proximal and distal bronchioles in excised NCFB lungs. RNA in situ hybridization and immunohistochemistry assessed bronchiolar mucus accumulation and mucin gene expression. CRISPR-Cas9-mediated IL-1R1 knockout in human bronchial epithelial cultures tested IL-1α and IL-1ß contributions to mucin production. Spatial transcriptional profiling characterized NCFB distal bronchiolar gene expression. Measurements and Main Results: Bronchiolar perimeters and lumen areas per section area were increased in proximal, but not distal, bronchioles in NCFB versus control lungs, suggesting proximal bronchiolectasis. In NCFB, mucus plugging was observed in ectatic proximal bronchioles and associated nonectatic distal bronchioles in sections with disease. MUC5AC and MUC5B mucins were upregulated in NCFB proximal bronchioles, whereas MUC5B was selectively upregulated in distal bronchioles. Bronchiolar mucus plugs were populated by IL-1ß-expressing macrophages. NCFB sterile sputum supernatants induced human bronchial epithelial MUC5B and MUC5AC expression that was >80% blocked by IL-1R1 ablation. Spatial transcriptional profiling identified upregulation of genes associated with secretory cells, hypoxia, interleukin pathways, and IL-1ß-producing macrophages in mucus plugs and downregulation of epithelial ciliogenesis genes. Conclusions: NCFB exhibits distinctive proximal and distal bronchiolar disease. Both bronchiolar regions exhibit bronchiolar secretory cell features and mucus plugging but differ in mucin gene regulation and ectasia.


Assuntos
Bronquiectasia , Fibrose Cística , Humanos , Bronquíolos , Dilatação Patológica , Bronquiectasia/genética , Mucinas/metabolismo , Interleucina-1beta , Fibrose , RNA , Mucina-5AC/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-38261629

RESUMO

RATIONALE: The airway microbiome has the potential to shape COPD pathogenesis, but its relationship to outcomes in milder disease is unestablished. OBJECTIVES: Identify sputum microbiome characteristics associated with markers of COPD in participants of the SubPopulations and InteRmediate Outcome Measures of COPD Study (SPIROMICS). METHODS: Sputum DNA from 877 participants were analyzed using 16S rRNA gene sequencing. Relationships between baseline airway microbiota composition and clinical, radiographic and muco-inflammatory markers, including longitudinal lung function trajectory, were examined. MEASUREMENTS AND MAIN RESULTS: Participant data represented predominantly milder disease (GOLD 0-2: N=732/877). Phylogenetic diversity (range of different species within a sample) correlated positively with baseline lung function, declined with higher GOLD stage, and correlated negatively with symptom burden, radiographic markers of airway disease, and total mucin concentrations (p<0.001). In co-variate adjusted regression models, organisms robustly associated with better lung function included members of Alloprevotella, Oribacterium, and Veillonella. Conversely, lower lung function, greater symptoms and radiographic measures of small airway disease associated with enrichment in members of Streptococcus, Actinobacillus, Actinomyces, and other genera. Baseline sputum microbiota features also associated with lung function trajectory during SPIROMICS follow up (stable/improved, decliner, or rapid decliner). The 'stable/improved' group (slope of FEV1 regression ≥ 66th percentile) had higher bacterial diversity at baseline, associated with enrichment in Prevotella, Leptotrichia, and Neisseria. In contrast, the 'rapid decliner' group (FEV1 slope ≤ 33rd percentile) had significantly lower baseline diversity, associated with enrichment in Streptococcus. CONCLUSIONS: In SPIROMICS baseline airway microbiota features demonstrate divergent associations with better or worse COPD-related outcomes.

8.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35074895

RESUMO

The development of small-molecules targeting different components of SARS-CoV-2 is a key strategy to complement antibody-based treatments and vaccination campaigns in managing the COVID-19 pandemic. Here, we show that two thiol-based chemical probes that act as reducing agents, P2119 and P2165, inhibit infection by human coronaviruses, including SARS-CoV-2, and decrease the binding of spike glycoprotein to its receptor, the angiotensin-converting enzyme 2 (ACE2). Proteomics and reactive cysteine profiling link the antiviral activity to the reduction of key disulfides, specifically by disruption of the Cys379-Cys432 and Cys391-Cys525 pairs distal to the receptor binding motif in the receptor binding domain (RBD) of the spike glycoprotein. Computational analyses provide insight into conformation changes that occur when these disulfides break or form, consistent with an allosteric role, and indicate that P2119/P2165 target a conserved hydrophobic binding pocket in the RBD with the benzyl thiol-reducing moiety pointed directly toward Cys432. These collective findings establish the vulnerability of human coronaviruses to thiol-based chemical probes and lay the groundwork for developing compounds of this class, as a strategy to inhibit the SARS-CoV-2 infection by shifting the spike glycoprotein redox scaffold.


Assuntos
Amino Álcoois/farmacologia , Enzima de Conversão de Angiotensina 2/química , Antivirais/farmacologia , Éteres Fenílicos/farmacologia , Receptores Virais/química , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Compostos de Sulfidrila/farmacologia , Regulação Alostérica , Amino Álcoois/química , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , Sítios de Ligação , COVID-19/virologia , Linhagem Celular , Dissulfetos/antagonistas & inibidores , Dissulfetos/química , Dissulfetos/metabolismo , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/virologia , Oxirredução , Éteres Fenílicos/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Receptores Virais/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Compostos de Sulfidrila/química , Tratamento Farmacológico da COVID-19
9.
Proc Natl Acad Sci U S A ; 119(16): e2119680119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35353667

RESUMO

Muco-obstructive lung diseases are typically associated with high risks of COVID-19 severity; however, allergic asthma showed reduced susceptibility. To investigate viral spread, primary human airway epithelial (HAE) cell cultures were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and host­virus interactions were examined via electron microscopy, immunohistochemistry, RNA in situ hybridization, and gene expression analyses. In HAE cell cultures, angiotensin-converting enzyme 2 (ACE2) expression governed cell tropism and viral load and was up-regulated by infection. Electron microscopy identified intense viral egress from infected ciliated cells and severe cytopathogenesis, culminating in the shedding of ciliated cells packed with virions, providing a large viral reservoir for spread and transmission. Intracellular stores of MUC5AC, a major airway mucin involved in asthma, were rapidly depleted, likely to trap viruses. To mimic asthmatic airways, HAE cells were treated with interleukin-13 (IL-13), which reduced viral titers, viral messenger RNA, and cell shedding, and significantly diminished the number of infected cells. Although mucus hyperproduction played a shielding role, IL-13­treated cells maintained a degree of protection despite the removal of mucus. Using Gene Expression Omnibus databases, bulk RNA-sequencing analyses revealed that IL-13 up-regulated genes controlling glycoprotein synthesis, ion transport, and antiviral processes (albeit not the typical interferon-induced genes) and down-regulated genes involved in cilial function and ribosomal processing. More precisely, we showed that IL-13 reduced ACE2 expression, intracellular viral load, and cell-to-cell transmission while increasing the cilial keratan sulfate coating. In conclusion, intense viral and cell shedding caused by SARS-CoV-2 infection was attenuated by IL-13, which affected viral entry, replication, and spread.


Assuntos
COVID-19 , Interleucina-13 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Interleucina-13/metabolismo , Sistema Respiratório/virologia
10.
Am J Respir Crit Care Med ; 208(9): 930-943, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695863

RESUMO

Rationale: CFTR (cystic fibrosis transmembrane conductance regulator) modulator drugs restore function to mutant channels in patients with cystic fibrosis (CF) and lead to improvements in body mass index and lung function. Although it is anticipated that early childhood treatment with CFTR modulators will significantly delay or even prevent the onset of advanced lung disease, lung neutrophils and inflammatory cytokines remain high in patients with CF with established lung disease despite modulator therapy, underscoring the need to identify and ultimately target the sources of this inflammation in CF lungs. Objectives: To determine whether CF lungs, like chronic obstructive pulmonary disease (COPD) lungs, harbor potentially pathogenic stem cell "variants" distinct from the normal p63/Krt5 lung stem cells devoted to alveolar fates, to identify specific variants that might contribute to the inflammatory state of CF lungs, and to assess the impact of CFTR genetic complementation or CFTR modulators on the inflammatory variants identified herein. Methods: Stem cell cloning technology developed to resolve pathogenic stem cell heterogeneity in COPD and idiopathic pulmonary fibrosis lungs was applied to end-stage lungs of patients with CF (three homozygous CFTR:F508D, one CFTR F508D/L1254X; FEV1, 14-30%) undergoing therapeutic lung transplantation. Single-cell-derived clones corresponding to the six stem cell clusters resolved by single-cell RNA sequencing of these libraries were assessed by RNA sequencing and xenografting to monitor inflammation, fibrosis, and mucin secretion. The impact of CFTR activity on these variants after CFTR gene complementation or exposure to CFTR modulators was assessed by molecular and functional studies. Measurements and Main Results: End-stage CF lungs display a stem cell heterogeneity marked by five predominant variants in addition to the normal lung stem cell, of which three are proinflammatory both at the level of gene expression and their ability to drive neutrophilic inflammation in xenografts in immunodeficient mice. The proinflammatory functions of these three variants were unallayed by genetic or pharmacological restoration of CFTR activity. Conclusions: The emergence of three proinflammatory stem cell variants in CF lungs may contribute to the persistence of lung inflammation in patients with CF with advanced disease undergoing CFTR modulator therapy.


Assuntos
Fibrose Cística , Doença Pulmonar Obstrutiva Crônica , Humanos , Pré-Escolar , Animais , Camundongos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Inflamação/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 324(1): L32-L37, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342131

RESUMO

Nicotine from cigarette smoke is a biologically active molecule that has pleiotropic effects in the airway, which could play a role in smoking-induced lung disease. However, whether nicotine and its metabolites reach sustained, physiologically relevant concentrations on airway surfaces of smokers is not well defined. To address these issues, concentrations of nicotine, cotinine, and hydroxycotinine were measured by mass spectrometry (MS) in supernatants of induced sputum obtained from participants in the subpopulations and intermediate outcome measures in COPD study (SPIROMICS), an ongoing observational study that included never smokers, former smokers, and current smokers with and without chronic obstructive pulmonary disease (COPD). A total of 980 sputum supernatants were analyzed from 77 healthy never smokers, 494 former smokers (233 with COPD), and 396 active smokers (151 with COPD). Sputum nicotine, cotinine, and hydroxycotinine concentrations corresponded to self-reported smoking status and were strongly correlated to urine measures. A cutoff of ∼8-10 ng/mL of sputum cotinine distinguished never smokers from active smokers. Accounting for sample dilution during processing, active smokers had airway nicotine concentrations in the 70-850 ng/mL (∼0.5-5 µM) range, and concentrations remained elevated even in current smokers who had not smoked within 24 h. This study demonstrates that airway nicotine and its metabolites are readily measured in sputum supernatants and can serve as biological markers of smoke exposure. In current smokers, nicotine is present at physiologically relevant concentrations for prolonged periods, supporting a contribution to cigarette-induced airway disease.


Assuntos
Nicotina , Doença Pulmonar Obstrutiva Crônica , Humanos , Nicotina/metabolismo , Cotinina/análise , Cotinina/metabolismo , Fumantes , Sistema Respiratório/metabolismo , Biomarcadores/análise
12.
J Theor Biol ; 565: 111470, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-36965846

RESUMO

The SARS-CoV-2 coronavirus continues to evolve with scores of mutations of the spike, membrane, envelope, and nucleocapsid structural proteins that impact pathogenesis. Infection data from nasal swabs, nasal PCR assays, upper respiratory samples, ex vivo cell cultures and nasal epithelial organoids reveal extreme variabilities in SARS-CoV-2 RNA titers within and between the variants. Some variabilities are naturally prone to clinical testing protocols and experimental controls. Here we focus on nasal viral load sensitivity arising from the timing of sample collection relative to onset of infection and from heterogeneity in the kinetics of cellular infection, uptake, replication, and shedding of viral RNA copies. The sources of between-variant variability are likely due to SARS-CoV-2 structural protein mutations, whereas within-variant population variability is likely due to heterogeneity in cellular response to that particular variant. With the physiologically faithful, agent-based mechanistic model of inhaled exposure and infection from (Chen et al., 2022), we perform statistical sensitivity analyses of the progression of nasal viral titers in the first 0-48 h post infection, focusing on three kinetic mechanisms. Model simulations reveal shorter latency times of infected cells (including cellular uptake, viral RNA replication, until the onset of viral RNA shedding) exponentially accelerate nasal viral load. Further, the rate of infectious RNA copies shed per day has a proportional influence on nasal viral load. Finally, there is a very weak, negative correlation of viral load with the probability of infection per virus-cell encounter, the model proxy for spike-receptor binding affinity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , RNA Viral/genética , Carga Viral , Teste para COVID-19
13.
Am J Respir Crit Care Med ; 206(11): 1336-1352, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816430

RESUMO

Rationale: The incidence and sites of mucus accumulation and molecular regulation of mucin gene expression in coronavirus (COVID-19) lung disease have not been reported. Objectives: To characterize the incidence of mucus accumulation and the mechanisms mediating mucin hypersecretion in COVID-19 lung disease. Methods: Airway mucus and mucins were evaluated in COVID-19 autopsy lungs by Alcian blue and periodic acid-Schiff staining, immunohistochemical staining, RNA in situ hybridization, and spatial transcriptional profiling. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected human bronchial epithelial (HBE) cultures were used to investigate mechanisms of SARS-CoV-2-induced mucin expression and synthesis and test candidate countermeasures. Measurements and Main Results: MUC5B and variably MUC5AC RNA concentrations were increased throughout all airway regions of COVID-19 autopsy lungs, notably in the subacute/chronic disease phase after SARS-CoV-2 clearance. In the distal lung, MUC5B-dominated mucus plugging was observed in 90% of subjects with COVID-19 in both morphologically identified bronchioles and microcysts, and MUC5B accumulated in damaged alveolar spaces. SARS-CoV-2-infected HBE cultures exhibited peak titers 3 days after inoculation, whereas induction of MUC5B/MUC5AC peaked 7-14 days after inoculation. SARS-CoV-2 infection of HBE cultures induced expression of epidermal growth factor receptor (EGFR) ligands and inflammatory cytokines (e.g., IL-1α/ß) associated with mucin gene regulation. Inhibiting EGFR/IL-1R pathways or administration of dexamethasone reduced SARS-CoV-2-induced mucin expression. Conclusions: SARS-CoV-2 infection is associated with a high prevalence of distal airspace mucus accumulation and increased MUC5B expression in COVID-19 autopsy lungs. HBE culture studies identified roles for EGFR and IL-1R signaling in mucin gene regulation after SARS-CoV-2 infection. These data suggest that time-sensitive mucolytic agents, specific pathway inhibitors, or corticosteroid administration may be therapeutic for COVID-19 lung disease.


Assuntos
COVID-19 , Humanos , Prevalência , SARS-CoV-2 , Mucina-5B/genética , Mucina-5AC/genética , Muco/metabolismo , Pulmão/metabolismo , Receptores ErbB , RNA/metabolismo
14.
Biophys J ; 121(9): 1619-1631, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35378080

RESUMO

Mechanistic insights into human respiratory tract (RT) infections from SARS-CoV-2 can inform public awareness as well as guide medical prevention and treatment for COVID-19 disease. Yet the complexity of the RT and the inability to access diverse regions pose fundamental roadblocks to evaluation of potential mechanisms for the onset and progression of infection (and transmission). We present a model that incorporates detailed RT anatomy and physiology, including airway geometry, physical dimensions, thicknesses of airway surface liquids (ASLs), and mucus layer transport by cilia. The model further incorporates SARS-CoV-2 diffusivity in ASLs and best-known data for epithelial cell infection probabilities, and, once infected, duration of eclipse and replication phases, and replication rate of infectious virions. We apply this baseline model in the absence of immune protection to explore immediate, short-term outcomes from novel SARS-CoV-2 depositions onto the air-ASL interface. For each RT location, we compute probability to clear versus infect; per infected cell, we compute dynamics of viral load and cell infection. Results reveal that nasal infections are highly likely within 1-2 days from minimal exposure, and alveolar pneumonia occurs only if infectious virions are deposited directly into alveolar ducts and sacs, not via retrograde propagation to the deep lung. Furthermore, to infect just 1% of the 140 m2 of alveolar surface area within 1 week, either 103 boluses each with 106 infectious virions or 106 aerosols with one infectious virion, all physically separated, must be directly deposited. These results strongly suggest that COVID-19 disease occurs in stages: a nasal/upper RT infection, followed by self-transmission of infection to the deep lung. Two mechanisms of self-transmission are persistent aspiration of infected nasal boluses that drain to the deep lung and repeated rupture of nasal aerosols from infected mucosal membranes by speaking, singing, or cheering that are partially inhaled, exhaled, and re-inhaled, to the deep lung.


Assuntos
COVID-19 , Aerossóis , Humanos , Pulmão , SARS-CoV-2 , Carga Viral
15.
Am J Respir Cell Mol Biol ; 67(2): 253-265, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35486871

RESUMO

The dynamics describing the vicious cycle characteristic of cystic fibrosis (CF) lung disease, initiated by stagnant mucus and perpetuated by infection and inflammation, remain unclear. Here we determine the effect of the CF airway milieu, with persistent mucoobstruction, resident pathogens, and inflammation, on the mucin quantity and quality that govern lung disease pathogenesis and progression. The concentrations of MUC5AC and MUC5B were measured and characterized in sputum samples from subjects with CF (N = 44) and healthy subjects (N = 29) with respect to their macromolecular properties, degree of proteolysis, and glycomics diversity. These parameters were related to quantitative microbiome and clinical data. MUC5AC and MUC5B concentrations were elevated, 30- and 8-fold, respectively, in CF as compared with control sputum. Mucin parameters did not correlate with hypertonic saline, inhaled corticosteroids, or antibiotics use. No differences in mucin parameters were detected at baseline versus during exacerbations. Mucin concentrations significantly correlated with the age and sputum human neutrophil elastase activity. Although significantly more proteolytic cleavages were detected in CF mucins, their macromolecular properties (e.g., size and molecular weight) were not significantly different than control mucins, likely reflecting the role of S-S bonds in maintaining multimeric structures. No evidence of giant mucin macromolecule reflecting oxidative stress-induced cross-linking was found. Mucin glycomic analysis revealed significantly more sialylated glycans in CF, and the total abundance of nonsulfated O-glycans correlated with the relative abundance of pathogens. Collectively, the interaction of mucins, pathogens, epithelium, and inflammatory cells promotes proteomic and glycomic changes that reflect a persistent mucoobstructive, infectious, and inflammatory state.


Assuntos
Fibrose Cística , Fibrose Cística/patologia , Humanos , Inflamação , Mucina-5AC , Mucina-5B , Muco , Proteômica , Sistema Respiratório/patologia
16.
Thorax ; 77(8): 812-820, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34697091

RESUMO

INTRODUCTION: Inhaled gene therapy of muco-obstructive lung diseases requires a strategy to achieve therapeutically relevant gene transfer to airway epithelium covered by particularly dehydrated and condensed mucus gel layer. Here, we introduce a synthetic DNA-loaded mucus-penetrating particle (DNA-MPP) capable of providing safe, widespread and robust transgene expression in in vivo and in vitro models of muco-obstructive lung diseases. METHODS: We investigated the ability of DNA-MPP to mediate reporter and/or therapeutic transgene expression in lung airways of a transgenic mouse model of muco-obstructive lung diseases (ie, Scnn1b-Tg) and in air-liquid interface cultures of primary human bronchial epithelial cells harvested from an individual with cystic fibrosis. A plasmid designed to silence epithelial sodium channel (ENaC) hyperactivity, which causes airway surface dehydration and mucus stasis, was intratracheally administered via DNA-MPP to evaluate therapeutic effects in vivo with or without pretreatment with hypertonic saline, a clinically used mucus-rehydrating agent. RESULTS: DNA-MPP exhibited marked greater reporter transgene expression compared with a mucus-impermeable formulation in in vivo and in vitro models of muco-obstructive lung diseases. DNA-MPP carrying ENaC-silencing plasmids provided efficient downregulation of ENaC and reduction of mucus burden in the lungs of Scnn1b-Tg mice, and synergistic impacts on both gene transfer efficacy and therapeutic effects were achieved when DNA-MPP was adjuvanted with hypertonic saline. DISCUSSION: DNA-MPP constitutes one of the rare gene delivery systems providing therapeutically meaningful gene transfer efficacy in highly relevant in vivo and in vitro models of muco-obstructive lung diseases due to its unique ability to efficiently penetrate airway mucus.


Assuntos
Pneumopatias Obstrutivas , Nanopartículas , Animais , DNA , Terapia Genética , Humanos , Pulmão/metabolismo , Pneumopatias Obstrutivas/terapia , Camundongos , Muco/metabolismo
17.
J Immunol ; 205(6): 1695-1708, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32817334

RESUMO

Innate lymphoid and adaptive immune cells are known to regulate epithelial responses, including mucous cell metaplasia (MCM), but their roles in mucoinflammatory airway diseases, such as cystic fibrosis, remain unknown. Scnn1b transgenic (Scnn1b-Tg+) mice, which recapitulate cystic fibrosis-like mucoinflammatory airway disease, deficient in innate lymphoid (Il2rg knockout mice [Il2rg KO]), adaptive immune (Rag1 knockout mice [Rag1 KO]), or both systems (Il2rg KO/Rag1 KO), were employed to investigate their respective contributions in the pathogenesis of mucoinflammatory airway disease. As previously reported, immunocompetent Tg+ juveniles exhibited spontaneous neonatal bacterial infections with robust mucoinflammatory features, including elevated expression of Th2-associated markers accompanied by MCM, elevated MUC5B expression, and airway mucus obstruction. The bacterial burden was increased in Il2rg KO/Tg+ juveniles but returned to significantly lower levels in Il2rg KO/Rag1 KO/Tg+ juveniles. Mechanistically, this improvement reflected reduced production of adaptive immunity-derived IL-10 and, in turn, increased activation of macrophages. Although all the mucoinflammatory features were comparable between the immunocompetent Tg+ and Rag1 KO/Tg+ juveniles, the Il2rg KO/Tg+ and Il2rg KO/Rag1 KO/Tg+ juveniles exhibited suppressed expression levels of Th2 markers, diminished MCM, suppressed MUC5B expression, and reduced mucus obstruction. Collectively, these data indicate that, in the context of airway mucus obstruction, the adaptive immune system suppresses antibacterial macrophage activation, whereas the innate lymphoid system contributes to MCM, mucin production, and mucus obstruction.


Assuntos
Fibrose Cística/imunologia , Células Epiteliais/metabolismo , Inflamação/imunologia , Mucina-5B/metabolismo , Doenças Respiratórias/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/patologia , Canais Epiteliais de Sódio/genética , Proteínas de Homeodomínio/genética , Humanos , Imunidade Inata , Metaplasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mucina-5B/genética , Regulação para Cima
18.
Am J Respir Crit Care Med ; 203(10): 1275-1289, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33321047

RESUMO

Rationale: Identification of the specific cell types expressing CFTR (cystic fibrosis [CF] transmembrane conductance regulator) is required for precision medicine therapies for CF. However, a full characterization of CFTR expression in normal human airway epithelia is missing. Objectives: To identify the cell types that contribute to CFTR expression and function within the proximal-distal axis of the normal human lung. Methods: Single-cell RNA (scRNA) sequencing (scRNA-seq) was performed on freshly isolated human large and small airway epithelial cells. scRNA in situ hybridization (ISH) and single-cell qRT-PCR were performed for validation. In vitro culture systems correlated CFTR function with cell types. Lentiviruses were used for cell type-specific transduction of wild-type CFTR in CF cells. Measurements and Main Results: scRNA-seq identified secretory cells as dominating CFTR expression in normal human large and, particularly, small airway superficial epithelia, followed by basal cells. Ionocytes expressed the highest CFTR levels but were rare, whereas the expression in ciliated cells was infrequent and low. scRNA ISH and single-cell qRT-PCR confirmed the scRNA-seq findings. CF lungs exhibited distributions of CFTR and ionocytes similar to those of normal control subjects. CFTR mediated Cl- secretion in cultures tracked secretory cell, but not ionocyte, densities. Furthermore, the nucleotide-purinergic regulatory system that controls CFTR-mediated hydration was associated with secretory cells and not with ionocytes. Lentiviral transduction of wild-type CFTR produced CFTR-mediated Cl- secretion in CF airway secretory cells but not in ciliated cells. Conclusions: Secretory cells dominate CFTR expression and function in human airway superficial epithelia. CFTR therapies may need to restore CFTR function to multiple cell types, with a focus on secretory cells.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Estudos de Casos e Controles , Técnicas de Cultura de Células , Humanos
19.
Am J Respir Crit Care Med ; 203(8): 957-968, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33180550

RESUMO

Rationale: The relative roles of mucus plugs and emphysema in mechanisms of airflow limitation and hypoxemia in smokers with chronic obstructive pulmonary disease (COPD) are uncertain.Objectives: To relate image-based measures of mucus plugs and emphysema to measures of airflow obstruction and oxygenation in patients with COPD.Methods: We analyzed computed tomographic (CT) lung images and lung function in participants in the Subpopulations and Intermediate Outcome Measures in COPD Study. Radiologists scored mucus plugs on CT lung images, and imaging software automatically quantified emphysema percentage. Unadjusted and adjusted relationships between mucus plug score, emphysema percentage, and lung function were determined using regression.Measurements and Main Results: Among 400 smokers, 229 (57%) had mucus plugs and 207 (52%) had emphysema, and subgroups could be identified with mucus-dominant and emphysema-dominant disease. Only 33% of smokers with high mucus plug scores had mucus symptoms. Mucus plug score and emphysema percentage were independently associated with lower values for FEV1 and peripheral oxygen saturation (P < 0.001). The relationships between mucus plug score and lung function outcomes were strongest in smokers with limited emphysema (P < 0.001). Compared with smokers with low mucus plug scores, those with high scores had worse COPD Assessment Test scores (17.4 ± 7.7 vs. 14.4 ± 13.3), more frequent annual exacerbations (0.75 ± 1.1 vs. 0.43 ± 0.85), and shorter 6-minute-walk distance (329 ± 115 vs. 392 ± 117 m) (P < 0.001).Conclusions: Symptomatically silent mucus plugs are highly prevalent in smokers and independently associate with lung function outcomes. These data provide rationale for targeting patients with mucus-high/emphysema-low COPD in clinical trials of mucoactive treatments.Clinical trial registered with www.clinicaltrials.gov (NCT01969344).


Assuntos
Hipóxia/induzido quimicamente , Hipóxia/fisiopatologia , Muco , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/fisiopatologia , Fumar/efeitos adversos , Idoso , Feminino , Volume Expiratório Forçado , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Função Respiratória , Fumantes , Capacidade Vital
20.
Am J Pathol ; 190(5): 977-993, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084371

RESUMO

Animal models of cystic fibrosis (CF) are essential for investigating disease mechanisms and trialing potential therapeutics. This study generated two CF rat models using clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 gene editing. One rat model carries the common human Phe508del (ΔF508) CF transmembrane conductance regulator (CFTR) mutation, whereas the second is a CFTR knockout model. Phenotype was characterized using a range of functional and histologic assessments, including nasal potential difference to measure electrophysiological function in the upper airways, RNAscope in situ hybridization and quantitative PCR to assess CFTR mRNA expression in the lungs, immunohistochemistry to localize CFTR protein in the airways, and histopathologic assessments in a range of tissues. Both rat models revealed a range of CF manifestations, including reduced survival, intestinal obstruction, bioelectric defects in the nasal epithelium, histopathologic changes in the trachea, large intestine, and pancreas, and abnormalities in the development of the male reproductive tract. The CF rat models presented herein will prove useful for longitudinal assessments of pathophysiology and therapeutics.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Fibrose Cística , Modelos Animais de Doenças , Edição de Genes/métodos , Animais , Sistemas CRISPR-Cas , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Camundongos Knockout , Mutação , Fenótipo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA