Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(3): 419-426, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868206

RESUMO

Australian Genomics is a national collaborative partnership of more than 100 organizations piloting a whole-of-system approach to integrating genomics into healthcare, based on federation principles. In the first five years of operation, Australian Genomics has evaluated the outcomes of genomic testing in more than 5,200 individuals across 19 rare disease and cancer flagship studies. Comprehensive analyses of the health economic, policy, ethical, legal, implementation and workforce implications of incorporating genomics in the Australian context have informed evidence-based change in policy and practice, resulting in national government funding and equity of access for a range of genomic tests. Simultaneously, Australian Genomics has built national skills, infrastructure, policy, and data resources to enable effective data sharing to drive discovery research and support improvements in clinical genomic delivery.


Assuntos
Genômica , Política de Saúde , Humanos , Austrália , Doenças Raras , Atenção à Saúde
2.
Am J Hum Genet ; 109(11): 1960-1973, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36332611

RESUMO

Sharing genomic variant interpretations across laboratories promotes consistency in variant assertions. A landscape analysis of Australian clinical genetic-testing laboratories in 2017 identified that, despite the national-accreditation-body recommendations encouraging laboratories to submit genotypic data to clinical databases, fewer than 300 variants had been shared to the ClinVar public database. Consultations with Australian laboratories identified resource constraints limiting routine application of manual processes, consent issues, and differences in interpretation systems as barriers to sharing. This information was used to define key needs and solutions required to enable national sharing of variant interpretations. The Shariant platform, using both the GRCh37 and GRCh38 genome builds, was developed to enable ongoing sharing of variant interpretations and associated evidence between Australian clinical genetic-testing laboratories. Where possible, two-way automated sharing was implemented so that disruption to laboratory workflows would be minimized. Terms of use were developed through consultation and currently restrict access to Australian clinical genetic-testing laboratories. Shariant was designed to store and compare structured evidence, to promote and record resolution of inter-laboratory classification discrepancies, and to streamline the submission of variant assertions to ClinVar. As of December 2021, more than 14,000 largely prospectively curated variant records from 11 participating laboratories have been shared. Discrepant classifications have been identified for 11% (28/260) of variants submitted by more than one laboratory. We have demonstrated that co-design with clinical laboratories is vital to developing and implementing a national variant-interpretation sharing effort. This approach has improved inter-laboratory concordance and enabled opportunities to standardize interpretation practices.


Assuntos
Bases de Dados Genéticas , Laboratórios , Humanos , Variação Genética , Austrália , Testes Genéticos
3.
Genet Med ; 26(5): 101076, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38258669

RESUMO

PURPOSE: Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. METHODS: ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. RESULTS: The ES diagnostic yield was 42 of 74 (57%). GS diagnoses were made in 9 of 32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8 of 9 single-nucleotide variations/copy-number variations undetected in older ES, confirming a GS-unique diagnostic rate of 1 in 32 (3%). Episignatures contributed diagnostic information in 9% with GS corroboration in 1 of 32 (3%) and diagnostic clues in 2 of 32 (6%). A genetic etiology for ID was detected in 51 of 74 (69%) families. Twelve candidate disease genes were identified. Contemporary ES followed by GS cost US$4976 (95% CI: $3704; $6969) per diagnosis and first-line GS at a cost of $7062 (95% CI: $6210; $8475) per diagnosis. CONCLUSION: Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.


Assuntos
Sequenciamento do Exoma , Exoma , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Masculino , Feminino , Exoma/genética , Sequenciamento do Exoma/economia , Estudos de Coortes , Testes Genéticos/economia , Testes Genéticos/métodos , Sequenciamento Completo do Genoma/economia , Criança , Genoma Humano/genética , Variações do Número de Cópias de DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Pré-Escolar
4.
Hum Genet ; 142(9): 1407-1416, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37479894

RESUMO

Genomics research related to Indigenous people has been at worst exploitative and at best, retrospectively on a journey to improve effective engagement of Indigenous individuals and communities. Genomics can positively impact all stages of clinical management, and to improve genomic effectiveness researchers aggregate genomic data from diverse global sub-populations, such as shared ancestry groupings, as people within these groupings will have a greater proportion of shared DNA traits. While genomics is already being used worldwide to improve lives, its utility and effectiveness has not been maximized for individuals with Indigenous ancestry. Several large datasets of human genetic variation have been made publicly available, of which the most widely used is the Genome Aggregation Database (gnomAD), but none of these databases currently contain any population-specific data for Indigenous populations. There are many reasons why Indigenous people have been largely left out of genomics research and, because of this, miss out on the benefits offered. It is also clear that if research is to be effective, it needs to be done 'with' and not 'on' Indigenous communities. This systematic review of the literature regarding Indigenous peoples (in high income countries) and genomics aims to review the existing literature and identify areas of strength and weakness in study design and conduct, focusing on the effectiveness of Indigenous community engagement.


Assuntos
Genômica , Povos Indígenas , Humanos , Países Desenvolvidos , Estudos Retrospectivos , Povos Indígenas/genética , Bases de Dados Factuais
5.
J Med Genet ; 59(8): 817-826, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34544841

RESUMO

BACKGROUND: In 2019, the Australian life insurance industry introduced a partial moratorium (ban) limiting the use of genetic test results in life insurance underwriting. The moratorium is industry self-regulated and applies only to policies below certain financial limits (eg, $500 000 of death cover). METHODS: We surveyed Australian health professionals (HPs) who discuss genetic testing with patients, to assess knowledge of the moratorium; reported patient experiences since its commencement; and HP views regarding regulation of genetic discrimination (GD) in Australia. RESULTS: Between April and June 2020, 166 eligible HPs responded to the online survey. Of these, 86% were aware of the moratorium, but <50% had attended related training/information sessions. Only 16% answered all knowledge questions correctly, yet 69% believed they had sufficient knowledge to advise patients. Genetics HPs' awareness and knowledge were better than non-genetics HPs' (p<0.05). There was some reported decrease in patients delaying/declining testing after the moratorium's introduction, however, 42% of HPs disagreed that patients were more willing to have testing post-moratorium. Although many (76%) felt the moratorium resolved some GD concerns, most (88%) still have concerns, primarily around self-regulation, financial limits and the moratorium's temporary nature. Almost half (49%) of HPs reported being dissatisfied with the moratorium as a solution to GD. The majority (95%) felt government oversight is required, and 93% felt specific Australian legislation regarding GD is required. CONCLUSION: While the current Australian moratorium is considered a step forward, most HPs believe it falls short of an adequate long-term regulatory solution to GD in life insurance.


Assuntos
Testes Genéticos , Seguro de Vida , Austrália , Humanos , Inquéritos e Questionários
6.
Am J Hum Genet ; 104(1): 13-20, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609404

RESUMO

Genomic sequencing is rapidly transitioning into clinical practice, and implementation into healthcare systems has been supported by substantial government investment, totaling over US$4 billion, in at least 14 countries. These national genomic-medicine initiatives are driving transformative change under real-life conditions while simultaneously addressing barriers to implementation and gathering evidence for wider adoption. We review the diversity of approaches and current progress made by national genomic-medicine initiatives in the UK, France, Australia, and US and provide a roadmap for sharing strategies, standards, and data internationally to accelerate implementation.


Assuntos
Atenção à Saúde/métodos , Atenção à Saúde/organização & administração , Genética Médica/métodos , Genética Médica/organização & administração , Genômica/tendências , Cooperação Internacional , Austrália , Atenção à Saúde/economia , Atenção à Saúde/tendências , Medicina Baseada em Evidências , França , Genética Médica/economia , Genética Médica/tendências , Genômica/economia , Humanos , Disseminação de Informação , Setor Privado , Reino Unido , Estados Unidos
7.
Am J Hum Genet ; 105(1): 7-14, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31271757

RESUMO

Australian Genomics is a national collaborative research partnership of more than 80 organizations piloting a whole-of-system approach to integrating genomics into healthcare that is based on federation principles. The aim of Australian Genomics is to assess the application of genomic testing in healthcare at the translational interface between research and clinical delivery, with an emphasis on robust evaluation of outcomes. It encompasses two bodies of work: a research program prospectively providing genomic testing through exemplar clinical projects in rare diseases, cancers, and reproductive carrier screening and interdependent programs for advancing the diagnostic, health informatics, regulatory, ethical, policy, and workforce infrastructure necessary for the integration of genomics into the Australian health system.


Assuntos
Atenção à Saúde , Genômica/métodos , Modelos Teóricos , Doenças Raras/genética , Austrália/epidemiologia , Humanos , Doenças Raras/epidemiologia
8.
J Paediatr Child Health ; 58(1): 8-15, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34427008

RESUMO

Monogenic rare disorders contribute significantly to paediatric morbidity and mortality, and elucidation of the underlying genetic cause may have benefits for patients, families and clinicians. Advances in genomic technology have enabled diagnostic yields of up to 50% in some paediatric cohorts. This has led to an increase in the uptake of genetic testing across paediatric disciplines. This can place an increased burden on paediatricians, who may now be responsible for interpreting and explaining test results to patients. However, genomic results can be complex, and sometimes inconclusive for the ordering paediatrician. Results may also cause uncertainty and anxiety for patients and their families. The paediatrician's genetic literacy and knowledge of genetic principles are therefore critical to inform discussions with families and guide ongoing patient care. Here, we present four hypothetical case vignettes where genomic testing is undertaken, and discuss possible results and their implications for paediatricians and families. We also provide a list of key terms for paediatricians.


Assuntos
Genômica , Pediatras , Criança , Testes Genéticos , Humanos
9.
Genet Med ; 23(1): 155-162, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32839572

RESUMO

PURPOSE: To estimate the value of genomic sequencing for complex pediatric neurological disorders of suspected genetic origin. METHODS: A discrete choice experiment (DCE) was undertaken to elicit societal preferences and values. A Bayesian D-efficient and explicit partial profile design was used. The design included 72 choice tasks, split across six blocks, with eight attributes (three overlapping per choice task) and three alternatives. Choice data were analyzed using a panel error component mixed logit model and a latent class model. Preference heterogeneity according to personal socioeconomic, demographic, and attitudinal characteristics was explored using linear and fractional logistic regressions. RESULTS: In total, 820 members of the Australian public were recruited. Statistically significant preferences were identified across all eight DCE attributes. We estimated that society on average would be willing to pay AU$5650 more (95% confidence interval [CI]: AU$5500 to $5800) (US$3955 [95% CI: US$3850 to $4060]) for genomic sequencing relative to standard care. Preference heterogeneity was identified for some personal characteristics. CONCLUSION: On average, society highly values all diagnostic, process, clinical, and nonclinical components of personal utility. To ensure fair prioritization of genomics, decision makers need to consider the wide range of risks and benefits associated with genomic information.


Assuntos
Doenças do Sistema Nervoso , Preferência do Paciente , Austrália , Teorema de Bayes , Criança , Comportamento de Escolha , Genômica , Humanos , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Inquéritos e Questionários
10.
J Paediatr Child Health ; 57(4): 477-483, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33566436

RESUMO

Genomic testing for a genetic diagnosis is becoming standard of care for many children, especially those with a syndromal intellectual disability. While previously this type of specialised testing was performed mainly by clinical genetics teams, it is increasingly being 'mainstreamed' into standard paediatric care. With the introduction of a new Medicare rebate for genomic testing in May 2020, this type of testing is now available for paediatricians to order, in consultation with clinical genetics. Children must be aged less than 10 years with facial dysmorphism and multiple congenital abnormalities or have global developmental delay or moderate to severe intellectual disability. This rebate should increase the likelihood of a genetic diagnosis, with accompanying benefits for patient management, reproductive planning and diagnostic certainty. Similar to the introduction of chromosomal microarray into mainstream paediatrics, this genomic testing will increase the number of genetic diagnoses, however, will also yield more variants of uncertain significance, incidental findings, and negative results. This paper aims to guide paediatricians through the process of genomic testing, and represents the combined expertise of educators, clinical geneticists, paediatricians and genomic pathologists around Australia. Its purpose is to help paediatricians navigate choosing the right genomic test, consenting patients and understanding the possible outcomes of testing.


Assuntos
Deficiência Intelectual , Pediatria , Idoso , Austrália , Criança , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Testes Genéticos , Genômica , Humanos , Deficiência Intelectual/genética , Programas Nacionais de Saúde
11.
BMC Med Ethics ; 22(1): 63, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020638

RESUMO

BACKGROUND: The use of genetic test results in risk-rated insurance is a significant concern internationally, with many countries banning or restricting the use of genetic test results in underwriting. In Australia, life insurers' use of genetic test results is legal and self-regulated by the insurance industry (Financial Services Council (FSC)). In 2018, an Australian Parliamentary Inquiry recommended that insurers' use of genetic test results in underwriting should be prohibited. In 2019, the FSC introduced an industry self-regulated moratorium on the use of genetic test results. In the absence of government oversight, it is critical that the impact, effectiveness and appropriateness of the moratorium is monitored. Here we describe the protocol of our government-funded research project, which will serve that critical function between 2020 and 2023. METHODS: A realist evaluation framework was developed for the project, using a context-mechanism-outcome (CMO) approach, to systematically assess the impact of the moratorium for a range of stakeholders. Outcomes which need to be achieved for the moratorium to accomplish its intended aims were identified, and specific data collection measures methods were developed to gather the evidence from relevant stakeholder groups (consumers, health professionals, financial industry and genetic research community) to determine if aims are achieved. Results from each arm of the study will be analysed and published in peer-reviewed journals as they become available. DISCUSSION: The A-GLIMMER project will provide essential monitoring of the impact and effectiveness of the self-regulated insurance moratorium. On completion of the study (3 years) a Stakeholder Report will be compiled. The Stakeholder Report will synthesise the evidence gathered in each arm of the study and use the CMO framework to evaluate the extent to which each of the outcomes have been achieved, and make evidence-based recommendations to the Australian federal government, life insurance industry and other stakeholders.


Assuntos
Seleção Tendenciosa de Seguro , Seguro de Vida , Austrália , Coleta de Dados , Testes Genéticos , Humanos
12.
Genet Med ; 22(8): 1311-1319, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32371919

RESUMO

PURPOSE: To estimate the personal utility and uptake of genomic sequencing (GS) across pediatric and adult-onset genetic conditions. METHODS: Three discrete choice experiment (DCE) surveys were designed and administered to separate representative samples of the Australian public. Bayesian D-efficient explicit partial profile designs were used. Choice data were analyzed using a panel error component random parameter logit model. RESULTS: Overall, 1913 participants completed the pediatric (n = 533), symptomatic adult (n = 700) and at-risk adult (n = 680) surveys. The willingness-to-pay for GS information in pediatric conditions was estimated at $5470-$15,250 (US$3830-$10,675) depending on the benefits of genomic information. Uptake ranged between 60% and 81%. For symptomatic adults, the value of GS was estimated at $1573-$8102 (US$1100-$5671) and uptake at 34-82%. For at-risk adults, GS was valued at $2036-$5004 (US$1425-$3503) and uptake was predicted at 35-61%. CONCLUSION: There is substantial personal utility in GS, particularly for pediatric conditions. Personal utility increased as the perceived benefits of genomic information increased. The clinical and regulatory context, and individuals' sociodemographic and attitudinal characteristics influenced the value and uptake of GS. Society values highly the diagnostic, clinical, and nonclinical benefits of GS. The personal utility of GS should be considered in health-care decision-making.


Assuntos
Comportamento de Escolha , Genoma , Adulto , Austrália , Teorema de Bayes , Criança , Genômica , Humanos , Preferência do Paciente , Inquéritos e Questionários
13.
Qual Life Res ; 29(9): 2445-2454, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32266555

RESUMO

PURPOSE: The complexity and severity of rare genetic conditions pose substantial burden to families. While the importance of spillovers on carers' health in resource allocation decisions is increasingly recognised, there is significant lack of empirical evidence in the context of rare diseases. The objective of this study was to estimate the health spillovers of paediatric rare genetic conditions on parents. METHODS: Health-related quality-of-life (HRQoL) data from children with rare genetic conditions (genetic kidney diseases, mitochondrial diseases, epileptic encephalopathies, brain malformations) and their parents were collected using the CHU9D and SF-12 measures, respectively. We used two approaches to estimate parental health spillovers. To quantify the 'absolute health spillover', we matched our parent cohort to the Australian general population. To quantify the 'relative health spillover', regression models were applied using the cohort data. RESULTS: Parents of affected children had significantly lower HRQoL compared to matched parents in the general public (- 0.06; 95% CIs - 0.08, - 0.04). Multivariable regression demonstrated a positive association between parental and child health. The mean magnitude of HRQoL loss in parents was estimated to be 33% of the HRQoL loss observed in children (95% CIs 21%, 46%). CONCLUSION: Paediatric rare genetic conditions appear to be associated with substantial parental health spillovers. This highlights the importance of including health effects on family members and caregivers into economic evaluation of genomic technologies and personalised medicine. Overlooking spillover effects may undervalue the benefits of diagnosis and management in this context. This study also expands the knowledge of family spillover to the rare disease spectrum.


Assuntos
Pais/psicologia , Qualidade de Vida/psicologia , Doenças Raras/genética , Adulto , Feminino , Humanos , Masculino
14.
BMC Med ; 17(1): 44, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30791916

RESUMO

BACKGROUND: Adopting clinical genomics represents a major systems-level intervention requiring diverse expertise and collective learning. The Australian Genomic Health Alliance (Australian Genomics) is strategically linking members and partner organisations to lead the integration of genomic medicine into healthcare across Australia. This study aimed to map and analyse interconnections between members-a key feature of complexity-to capture the collaborations among the genomic community, document learning, assess Australian Genomics' influence and identify key players. METHODS: An online, whole network study collected relational data from members asking them about two time points: baseline, before Australian Genomics started operation in 2016 and current in 2018. Likert style questions assessed the influence of various sources of knowledge on the respondents' genomic practice. A secure link to the online questionnaire was distributed to all members of Australian Genomics during May 2018. Social network data was analysed and visually constructed using Gephi 0.9.2 software, and Likert questions were analysed using chi-squared computations in SPSS. The project was given ethical approval. RESULTS: Response rate was 57.81% (222/384). The genomic learning community within Australian Genomics was constructed from the responses of participants. There was a growth in ties from pre-2016 (2925 ties) to 2018 (6381 ties) and an increase in density (0.020 to 0.043) suggesting the strong influence of Australian Genomics in creating this community. Respondents nominated 355 collaborative partners from 24 different countries outside of Australia and 328 partners from within Australia but outside the alliance. Key players were the Australian Genomics Manager, two clinical geneticists and four Operational staff members. Most influential sources of learning were hands on learning, shared decision making, journal articles and conference presentations in contrast to formal courses. CONCLUSIONS: The successful implementation of clinical genomics requires the engagement of multidisciplinary teams across a range of conditions and expertise. Australian Genomics is shown to be facilitating this collaborative process by strategically building a genomic learning community. We demonstrate the importance of social processes in building complex networks as respondents name "hands on learning" and "making group decisions" the most potent influences of their genomic practice. This has implications for genomic implementation, education and work force strategies.


Assuntos
Genômica/métodos , Rede Social , Austrália , Humanos , Aprendizagem , Inquéritos e Questionários
17.
Eur J Hum Genet ; 32(1): 61-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37709947

RESUMO

There has been keen interest in whether dynamic consent should be used in health research but few real-world studies have evaluated its use. Australian Genomics piloted and evaluated CTRL ('control'), a digital consent tool incorporating granular, dynamic decision-making and communication for genomic research. Individuals from a Cardiovascular Genetic Disorders Flagship were invited in person (prospective cohort) or by email (retrospective cohort) to register for CTRL after initial study recruitment. Demographics, consent choices, experience surveys and website analytics were analysed using descriptive statistics. Ninety-one individuals registered to CTRL (15.5% of the prospective cohort and 11.8% of the retrospective cohort). Significantly more males than females registered when invited retrospectively, but there was no difference in age, gender, or education level between those who did and did not use CTRL. Variation in individual consent choices about secondary data use and return of results supports the desirability of providing granular consent options. Robust conclusions were not drawn from satisfaction, trust, decision regret and knowledge outcome measures: differences between CTRL and non-CTRL cohorts did not emerge. Analytics indicate CTRL is acceptable, although underutilised. This is one of the first studies evaluating uptake and decision making using online consent tools and will inform refinement of future designs.


Assuntos
Comunicação , Consentimento Livre e Esclarecido , Masculino , Feminino , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Austrália
18.
Eur J Hum Genet ; 32(1): 98-108, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37280361

RESUMO

Genetic risk information for medically actionable conditions has relevance for patients' blood relatives. However, cascade testing uptake in at-risk families is <50%, and the burden of contacting relatives is a significant barrier to dissemination of risk information. Health professionals (HPs) could notify at-risk relatives directly, with patients' consent. This practice is supported by international literature, including strong public support. However, there is little exploration of the Australian public's views about this issue. We surveyed Australian adults using a consumer research company. Respondents were provided a hypothetical scenario and asked about views and preferences regarding direct contact by HPs. 1030 members of the public responded, with median age 45 y and 51% female. The majority would want to be told about genetic risk for conditions that can be prevented/treated early (85%) and contacted directly by a HP (68%). Most preferred a letter that included specific information about the genetic condition in the family (67%) and had no privacy concerns about HPs sending a letter using contact details provided by a relative (85%). A minority (< 5%) had significant privacy concerns, mostly about use of personal contact information. Concerns included ensuring information was not shared with third parties. Almost 50% would prefer that a family member contacted them before the letter was sent, while about half did not prefer this or were unsure. The Australian public supports (and prefers) direct notification of relatives at risk of medically actionable genetic conditions. Guidelines would assist with clarifying clinicians' discretion in this area.


Assuntos
Consentimento Livre e Esclarecido , Pacientes , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Austrália , Fatores de Risco , Inquéritos e Questionários
19.
Eur J Hum Genet ; 32(3): 286-294, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37169978

RESUMO

Fears of genetic discrimination in life insurance continue to deter some Australians from genetic testing. In July 2019, the life insurance industry introduced a partial, self-regulated moratorium restricting the use of genetic results in underwriting, applicable to policies up to certain limits (eg AUD$500,000 for death cover).We administered an online survey to consumers who had taken, or been offered, clinical genetic testing for adult-onset conditions, to gather views and experiences about the moratorium and the use of genetic results in life insurance, including its regulation.Most respondents (n = 367) had undertaken a genetic test (89%), and had a positive test result (76%; n = 243/321). Almost 30% (n = 94/326) reported testing after 1 July 2019. Relatively few respondents reported knowing about the moratorium (16%; n = 54/340) or that use of genetic results in life insurance underwriting is legal (17%; n = 60/348). Only 4% (n = 14/350) consider this practice should be allowed. Some respondents reported ongoing difficulties accessing life insurance products, even after the moratorium. Further, discrimination concerns continue to affect some consumers' decision-making about having clinical testing and applying for life insurance products, despite the Moratorium being in place. Most respondents (88%; n = 298/340) support the introduction of legislation by the Australian government to regulate this issue.Despite the introduction of a partial moratorium in Australia, fears of genetic discrimination persist, and continue to deter people from genetic testing. Consumers overwhelmingly consider life insurers should not be allowed to use genetic results in underwriting, and that federal legislation is required to regulate this area.


Assuntos
População Australasiana , Seleção Tendenciosa de Seguro , Seguro de Vida , Adulto , Humanos , Austrália , Testes Genéticos , Inquéritos e Questionários
20.
Eur J Hum Genet ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637700

RESUMO

Genetic testing can provide valuable information to mitigate personal disease risk, but the use of genetic results in life insurance underwriting is known to deter many consumers from pursuing genetic testing. In 2019, following Australian Federal Parliamentary Inquiry recommendations, the Financial Services Council (FSC) introduced an industry-led partial moratorium, prohibiting life insurance companies from using genetic test results for policies up to $AUD500,000. We used semi-structured interviews to explore genetic test consumers' experiences and views about the FSC moratorium and the use of genetic results by life insurers. Individuals who participated in an online survey and agreed to be re-contacted to discuss the issue further were invited. Interviews were 20-30-min long, conducted via video conference, transcribed verbatim and analysed using inductive content analysis. Twenty-seven participants were interviewed. Despite the moratorium, concerns about genetic discrimination in life insurance were prevalent. Participants reported instances where life insurers did not consider risk mitigation when assessing risk for policies based on genetic results, contrary to legal requirements. Most participants felt that the moratorium provided inadequate protection against discrimination, and that government legislation regulating life insurers' use of genetic results is necessary. Many participants perceived the financial limits to be inadequate, given the cost-of-living in Australia. Our findings indicate that from the perspective of participants, the moratorium has not been effective in allaying fears about genetic discrimination or ensuring adequate access to life insurance products. Concern about genetic discrimination in life insurance remains prevalent in Australia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA