Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Physiol Renal Physiol ; 318(1): F35-F42, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682174

RESUMO

Studies in rodents with reduced nephron mass have suggested a strong positive correlation between dietary phosphate consumption and CKD progression. Prior work by our group demonstrated that dietary phosphate restriction can prevent tubular injury and microcyst formation in rodents with glomerulonephritis. Tubular injury and cystic dilation of tubules are key contributors to kidney function decline in polycystic kidney disease (PKD). Here, we determined whether dietary phosphate restriction slows renal cyst growth and fibrosis in a mouse model of PKD. Pcy/pcy mice received a normal phosphate (0.54%) or a phosphate-restricted (0.02%) diet (n = 10/group) from 7 to 20 wk of age. All of the other major dietary constituents, including protein source and content, were comparable between the two diets. At 20 wk, body weight, kidney weight-to-body weight ratio (KW/BW), cystic area, cyst number, and kidney fibrosis were quantified. Pcy/pcy mice fed a phosphate-restricted diet had lower serum phosphate, fibroblast growth factor 23, and parathyroid hormone levels, along with elevated serum calcium levels and increased kidney Klotho gene expression compared with mice that consumed the control diet. Dietary phosphate restriction resulted in a 25% lower KW/BW ratio and reduced the cyst number, cystic index, and gene expression for the tubular injury markers neutrophil gelatinase-associated lipocalin and interleukin-18. Mice fed the phosphate-restricted diet exhibited lower kidney expression for pathways involved in collagen deposition and myofibroblast activation (collagen type I-α1, phosphorylated SMAD3, and α-smooth muscle actin); however, histological differences in kidney fibrosis were not appreciated. Dietary phosphate restriction slows cystogenesis and inhibits the activation of key pathways in the generation of kidney fibrosis in PKD mice.


Assuntos
Rim/metabolismo , Fosfatos , Doenças Renais Policísticas/dietoterapia , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Rim/patologia , Cinesinas/genética , Cinesinas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia
2.
Commun Biol ; 7(1): 932, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095617

RESUMO

While significant advances have been made in understanding renal pathophysiology, less is known about the role of glycosphingolipid (GSL) metabolism in driving organ dysfunction. Here, we used a small molecule inhibitor of glucosylceramide synthase to modulate GSL levels in three mouse models of distinct renal pathologies: Alport syndrome (Col4a3 KO), polycystic kidney disease (Nek8jck), and steroid-resistant nephrotic syndrome (Nphs2 cKO). At the tissue level, we identified a core immune-enriched transcriptional signature that was shared across models and enriched in human polycystic kidney disease. Single nuclei analysis identified robust transcriptional changes across multiple kidney cell types, including epithelial and immune lineages. To further explore the role of GSL modulation in macrophage biology, we performed in vitro studies with homeostatic and inflammatory bone marrow-derived macrophages. Cumulatively, this study provides a comprehensive overview of renal dysfunction and the effect of GSL modulation on kidney-derived cells in the setting of renal dysfunction.


Assuntos
Glucosiltransferases , Macrófagos , Animais , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/antagonistas & inibidores , Camundongos Knockout , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Rim/patologia , Rim/metabolismo , Rim/efeitos dos fármacos , Masculino
3.
J Am Soc Nephrol ; 23(10): 1691-700, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22859851

RESUMO

The incidence of cardiovascular events and mortality strongly correlates with serum phosphate in individuals with CKD. The Npt2b transporter contributes to maintaining phosphate homeostasis in the setting of normal renal function, but its role in CKD-associated hyperphosphatemia is not well understood. Here, we used adenine to induce uremia in both Npt2b-deficient and wild-type mice. Compared with wild-type uremic mice, Npt2b-deficient uremic mice had significantly lower levels of serum phosphate and attenuation of FGF23. Treating Npt2b-deficient mice with the phosphate binder sevelamer carbonate further reduced serum phosphate levels. Uremic mice exhibited high turnover renal osteodystrophy; treatment with sevelamer significantly decreased the number of osteoclasts and the rate of mineral apposition in Npt2b-deficient mice, but sevelamer did not affect bone formation and rate of mineral apposition in wild-type mice. Taken together, these data suggest that targeting Npt2b in addition to using dietary phosphorus binders may be a therapeutic approach to modulate serum phosphate in CKD.


Assuntos
Hiperfosfatemia/etiologia , Insuficiência Renal Crônica/complicações , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/deficiência , Animais , Distúrbio Mineral e Ósseo na Doença Renal Crônica/tratamento farmacológico , Distúrbio Mineral e Ósseo na Doença Renal Crônica/etiologia , Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Hiperfosfatemia/metabolismo , Camundongos , Camundongos Knockout , Poliaminas/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Sevelamer , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/genética , Uremia/complicações , Uremia/metabolismo
4.
Kidney360 ; 3(9): 1578-1589, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36245654

RESUMO

Background: Nephron loss dramatically increases tubular phosphate to concentrations that exceed supersaturation. Osteopontin (OPN) is a matricellular protein that enhances mineral solubility in solution; however, the role of OPN in maintaining urinary phosphate solubility in CKD remains undefined. Methods: Here, we examined (1) the expression patterns and timing of kidney/urine OPN changes in CKD mice, (2) if tubular injury is necessary for kidney OPN expression in CKD, (3) how OPN deletion alters kidney mineral deposition in CKD mice, (4) how neutralization of the mineral-binding (ASARM) motif of OPN alters kidney mineral deposition in phosphaturic mice, and (5) the in vitro effect of phosphate-based nanocrystals on tubular epithelial cell OPN expression. Results: Tubular OPN expression was dramatically increased in all studied CKD murine models. Kidney OPN gene expression and urinary OPN/Cr ratios increased before changes in traditional biochemical markers of kidney function. Moreover, a reduction of nephron numbers alone (by unilateral nephrectomy) was sufficient to induce OPN expression in residual nephrons and induction of CKD in OPN-null mice fed excess phosphate resulted in severe nephrocalcinosis. Neutralization of the ASARM motif of OPN in phosphaturic mice resulted in severe nephrocalcinosis that mimicked OPN-null CKD mice. Lastly, in vitro experiments revealed calcium-phosphate nanocrystals to induce OPN expression by tubular epithelial cells directly. Conclusions: Kidney OPN expression increases in early CKD and serves a critical role in maintaining tubular mineral solubility when tubular phosphate concentrations are exceedingly high, as in late-stage CKD. Calcium-phosphate nanocrystals may be a proximal stimulus for tubular OPN production.


Assuntos
Nefrocalcinose , Insuficiência Renal Crônica , Animais , Camundongos , Biomarcadores , Cálcio , Fosfatos de Cálcio , Camundongos Knockout , Osteopontina/genética , Solubilidade
5.
Cells ; 11(4)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35203245

RESUMO

Col4a3-/- Alport mice serve as an animal model for renal fibrosis. MicroRNA-21 (miR-21) expression has been shown to be increased in the kidneys of Alport syndrome patients. Here, we investigated the nephroprotective effects of Lademirsen anti-miR-21 therapy. We used a fast-progressing Col4a3-/- mouse model with a 129/SvJ background and an intermediate-progressing F1 hybrid mouse model with a mixed genetic background, with angiotensin-converting enzyme inhibitor (ACEi) monotherapy in combination with anti-miR-21 therapy. In the fast-progressing model, the anti miR-21 and ACEi therapies showed an additive effect in the reduction in fibrosis, the decline of proteinuria, the preservation of kidney function and increased survival. In the intermediate-progressing F1 model, the anti-miR-21 and ACEi therapies individually improved kidney pathology. Both also improved kidney function and survival; however, the combination showed a significant additive effect, particularly for survival. RNA sequencing (RNA-seq) gene expression profiling revealed that the anti-miR-21 and ACEi therapies modulate several common pathways. However, anti-miR-21 was particularly effective at normalizing the expression profiles of the genes involved in renal tubulointerstitial injury pathways. In conclusion, significant additive effects were detected for the combination of anti-miR-21 and ACEi therapies on kidney function, pathology and survival in Alport mouse models, as well as a strong differential effect of anti-miR-21 on the renal expression of fibrotic factors. These results support the addition of anti-miR-21 to the current standard of care (ACEi) in ongoing clinical trials in patients with Alport syndrome.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , MicroRNAs , Nefrite Hereditária , Insuficiência Renal , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Antagomirs , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Camundongos , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/genética , Insuficiência Renal/tratamento farmacológico
6.
J Am Soc Nephrol ; 20(11): 2348-58, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19729436

RESUMO

Intestinal phosphate absorption occurs through both a paracellular mechanism involving tight junctions and an active transcellular mechanism involving the type II sodium-dependent phosphate cotransporter NPT2b (SLC34a2). To define the contribution of NPT2b to total intestinal phosphate absorption, we generated an inducible conditional knockout mouse, Npt2b(-/-) (Npt2b(fl/fl):Cre(+/-)). Npt2b(-/-) animals had increased fecal phosphate excretion and hypophosphaturia, but serum phosphate remained unchanged. Decreased urinary phosphate excretion correlated with reduced serum levels of the phosphaturic hormone FGF23 and increased protein expression of the renal phosphate transporter Npt2a. These results demonstrate that the absence of Npt2b triggers compensatory renal mechanisms to maintain phosphate homeostasis. In animals fed a low phosphate diet followed by acute administration of a phosphate bolus, Npt2b(-/-) animals absorbed approximately 50% less phosphate than wild-type animals, confirming a major role of this transporter in phosphate regulation. In vitro analysis of active phosphate transport in ileum segments isolated from wild-type or Npt2b(-/-) mice demonstrated that Npt2b contributes to >90% of total active phosphate absorption. In summary, Npt2b is largely responsible for intestinal phosphate absorption and contributes to the maintenance of systemic phosphate homeostasis.


Assuntos
Homeostase/fisiologia , Íleo/metabolismo , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/fisiologia , Absorção , Animais , Transporte Biológico Ativo , Fator de Crescimento de Fibroblastos 23 , Camundongos
7.
Hum Gene Ther ; 30(7): 865-881, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30808234

RESUMO

Alport syndrome is a genetic disease caused by mutations in type IV collagen and is characterized by progressive kidney disease. The Col4α3-/- mouse model recapitulates the main features of human Alport syndrome. Previously, it was reported that kidney microRNA-21 (miR-21) expression is significantly increased in Col4α3-/- mice, and administration of anti-miR-21 oligonucleotides (anti-miR-21) attenuates kidney disease progression in Col4α3-/- mice, indicating that miR-21 is a viable therapeutic target for Alport syndrome. However, the expression pattern of miR-21 in the kidneys of patients with human Alport syndrome has not been evaluated. Paraffin-embedded kidney specimens were obtained from 27 patients with Alport syndrome and from 10 normal controls. They were evaluated for miR-21 expression and for in situ hybridization and mRNA expression by quantitative polymerase chain reaction. In addition, anti-miR-21 was administrated to Col4α3-/- mice at different stages of disease, and changes in proteinuria, kidney function, and survival were monitored. Transcriptomic analysis of mouse kidney was conducted using RNA sequencing. miR-21 expression was significantly elevated in kidney specimens from patients with Alport syndrome compared to normal controls. Elevated renal miR-21 expression positively correlated with 24 h urine protein, serum blood urea nitrogen, serum creatinine, and severity of kidney pathology. On histological evaluation, high levels of miR-21 were localized to damaged tubular epithelial cells and glomeruli. Kidney specimens from both humans and mice with Alport syndrome exhibited abnormal expression of genes involved in kidney injury, fibrosis, inflammation, mitochondrial function, and lipid metabolism. Administration of anti-miR-21 to Alport mice resulted in slowing of kidney function decline, partial reversal of abnormal gene expression associated with disease pathology, and improved survival. Increased levels of miR-21 in human Alport kidney samples showed a correlation with kidney disease severity measured by proteinuria, biomarkers of kidney function, and kidney histopathology scores. These human data, combined with the finding that a reduction of miR-21 in Col4α3-/- mice improves kidney phenotype and survival, support miR-21 as a viable therapeutic target for the treatment of Alport syndrome.


Assuntos
Regulação da Expressão Gênica , Predisposição Genética para Doença , MicroRNAs/genética , Nefrite Hereditária/genética , Adolescente , Animais , Autoantígenos , Biomarcadores , Biópsia , Criança , Colágeno Tipo IV/deficiência , Modelos Animais de Doenças , Feminino , Fibrose , Perfilação da Expressão Gênica , Estudos de Associação Genética , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Knockout , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/metabolismo , Índice de Gravidade de Doença
8.
J Bone Miner Res ; 29(5): 1141-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24166835

RESUMO

Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-ß1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-ß1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystrophy. A neutralizing anti-TGF-ß antibody (1D11) was used to explore TGF-ß's role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. Micro-computed tomography (µCT) confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum parathyroid hormone (PTH) levels, indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high-turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/ß-catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore, our data suggest that elevated TGF-ß may contribute to the pathogenesis of high-turnover disease partially through inhibition of ß-catenin signaling.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Osteoclastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Via de Sinalização Wnt , Animais , Anticorpos Neutralizantes/farmacologia , Antígenos de Diferenciação/metabolismo , Distúrbio Mineral e Ósseo na Doença Renal Crônica/diagnóstico por imagem , Distúrbio Mineral e Ósseo na Doença Renal Crônica/genética , Distúrbio Mineral e Ósseo na Doença Renal Crônica/patologia , Colágeno Tipo I , Modelos Animais de Doenças , Masculino , Camundongos , Osteocalcina/metabolismo , Osteoclastos/patologia , Peptídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/genética , Microtomografia por Raio-X
9.
J Bone Miner Res ; 27(8): 1757-72, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22492547

RESUMO

Chronic kidney disease-mineral bone disorder (CKD-MBD) is defined by abnormalities in mineral and hormone metabolism, bone histomorphometric changes, and/or the presence of soft-tissue calcification. Emerging evidence suggests that features of CKD-MBD may occur early in disease progression and are associated with changes in osteocyte function. To identify early changes in bone, we utilized the jck mouse, a genetic model of polycystic kidney disease that exhibits progressive renal disease. At 6 weeks of age, jck mice have normal renal function and no evidence of bone disease but exhibit continual decline in renal function and death by 20 weeks of age, when approximately 40% to 60% of them have vascular calcification. Temporal changes in serum parameters were identified in jck relative to wild-type mice from 6 through 18 weeks of age and were subsequently shown to largely mirror serum changes commonly associated with clinical CKD-MBD. Bone histomorphometry revealed progressive changes associated with increased osteoclast activity and elevated bone formation relative to wild-type mice. To capture the early molecular and cellular events in the progression of CKD-MBD we examined cell-specific pathways associated with bone remodeling at the protein and/or gene expression level. Importantly, a steady increase in the number of cells expressing phosphor-Ser33/37-ß-catenin was observed both in mouse and human bones. Overall repression of Wnt/ß-catenin signaling within osteocytes occurred in conjunction with increased expression of Wnt antagonists (SOST and sFRP4) and genes associated with osteoclast activity, including receptor activator of NF-κB ligand (RANKL). The resulting increase in the RANKL/osteoprotegerin (OPG) ratio correlated with increased osteoclast activity. In late-stage disease, an apparent repression of genes associated with osteoblast function was observed. These data confirm that jck mice develop progressive biochemical changes in CKD-MBD and suggest that repression of the Wnt/ß-catenin pathway is involved in the pathogenesis of renal osteodystrophy.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Distúrbio Mineral e Ósseo na Doença Renal Crônica/patologia , Progressão da Doença , Osteócitos/metabolismo , Osteócitos/patologia , Via de Sinalização Wnt , Proteínas Adaptadoras de Transdução de Sinal , Animais , Biópsia , Remodelação Óssea , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Calcificação Fisiológica , Anormalidades Cardiovasculares/sangue , Anormalidades Cardiovasculares/complicações , Anormalidades Cardiovasculares/patologia , Anormalidades Cardiovasculares/fisiopatologia , Distúrbio Mineral e Ósseo na Doença Renal Crônica/sangue , Distúrbio Mineral e Ósseo na Doença Renal Crônica/fisiopatologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Falência Renal Crônica/sangue , Falência Renal Crônica/complicações , Falência Renal Crônica/patologia , Falência Renal Crônica/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mutação/genética , Quinases Relacionadas a NIMA , Osteoclastos/metabolismo , Osteoclastos/patologia , Proteínas Serina-Treonina Quinases/genética , Calcificação Vascular , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA