Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Funct Biomater ; 14(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37103294

RESUMO

The solid phase of a commercial calcium phosphate (Graftys® HBS) was combined with ovine or human blood stabilized either with sodium citrate or sodium heparin. The presence of blood delayed the setting reaction of the cement by ca. 7-15 h, depending on the nature of the blood and blood stabilizer. This phenomenon was found to be directly related to the particle size of the HBS solid phase, since prolonged grinding of the latter resulted in a shortened setting time (10-30 min). Even though ca. 10 h were necessary for the HBS blood composite to harden, its cohesion right after injection was improved when compared to the HBS reference as well as its injectability. A fibrin-based material was gradually formed in the HBS blood composite to end-up, after ca. 100 h, with a dense 3D organic network present in the intergranular space, thus affecting the microstructure of the composite. Indeed, SEM analyses of polished cross-sections showed areas of low mineral density (over 10-20 µm) spread in the whole volume of the HBS blood composite. Most importantly, when the two cement formulations were injected in the tibial subchondral cancellous bone in a bone marrow lesion ovine model, quantitative SEM analyses showed a highly significant difference between the HBS reference versus its analogue combined with blood. After a 4-month implantation, histological analyses clearly showed that the HBS blood composite underwent high resorption (remaining cement: ca. 13.1 ± 7.3%) and new bone formation (newly formed bone: 41.8 ± 14.7%). This was in sharp contrast with the case of the HBS reference for which a low resorption rate was observed (remaining cement: 79.0 ± 6.9%; newly formed bone: 8.6 ± 4.8%). This study suggested that the particular microstructure, induced by the use of blood as the HBS liquid phase, favored quicker colonization of the implant and acceleration of its replacement by newly formed bone. For this reason, the HBS blood composite might be worth considering as a potentially suitable material for subchondroplasty.

2.
J Mater Sci Mater Med ; 23(3): 797-803, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22190199

RESUMO

Resorption of synthetic bone substitute materials is essential for the integration of these materials into the natural bone remodeling process. Osteoclast behavior in the presence of calcium phosphate bioceramics (CaPB) is partially understood, and a better understanding of the underlying mechanisms is expected to facilitate the development of new synthetic bone substitutes to improve bone regeneration. In the present study, our aim was to investigate osteoclastic resorption of various synthetic CaPB. We used neonatal total rabbit bone cells to generate osteoclasts. Osteoclast-generated resorption on dentine and multiple CaPB was investigated by quantifying the surface resorbed and measuring tartrate resistant acid phosphatase (TRAP) enzyme activity. In this study, we observed that osteoclastic cells responded in a different way to each substrate. Both dentine and CaPB were resorbed but the quantitative results for the surface resorbed and TRAP activity showed a specific response to each substrate and that increased mineral density seemed to inhibit osteoclast activity.


Assuntos
Substitutos Ósseos , Fosfatos de Cálcio/química , Dentina/química , Osteoclastos/citologia , Técnicas In Vitro
3.
J Dairy Res ; 79(2): 238-48, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22559064

RESUMO

Precipitation of calcium phosphates occurs in dairy products and depending on pH and ionic environment, several salts with different crystallinity can form. The present study aimed to investigate the effects of NaCl and citrate on the characteristics of precipitates obtained from model solutions of calcium phosphate at pH 6·70 maintained constant or left to drift. The ion speciation calculations showed that all the starting solutions were supersaturated with respect to dicalcium phosphate dihydrate (DCPD), octacalcium phosphate (OCP) and hydroxyapatite (HAP) in the order HAP>OCP>DCPD. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses of the precipitates showed that DCPD was formed at drifting pH (acidic final pH) whereas poor crystallised calcium deficient apatite was mainly formed at constant pH (6·70). Laser light scattering measurements and electron microscopy observations showed that citrate had a pronounced inhibitory effect on the crystallisation of calcium phosphates both at drifting and constant pH. This resulted in the decrease of the particle sizes and the modification of the morphology and the microstructure of the precipitates. The inhibitory effect of citrate mainly acted by the adsorption of the citrate molecules onto the surfaces of newly formed nuclei of calcium phosphate, thereby changing the morphology of the growing particles. These findings are relevant for the understanding of calcium phosphate precipitation from dairy byproducts that contain large amounts of NaCl and citrate.


Assuntos
Fosfatos de Cálcio/química , Ácido Cítrico/farmacologia , Cloreto de Sódio/farmacologia , Precipitação Química , Cristalização , Durapatita/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica , Tamanho da Partícula , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Difração de Raios X
4.
Inorg Chem ; 50(17): 8252-60, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21793526

RESUMO

Addition of a gallium (Ga) precursor in the typical reaction protocols used for the preparation of ß-tricalcium phosphate (ß-TCP) led to novel Ga-doped ß-TCP ceramics with rhombohedral structures (R3c space group). From the refinement of their X-ray diffraction patterns, it was found that the incorporation of Ga in the ß-TCP network occurs by substitution of one of the five calcium (Ca) sites, while occupation of another Ca site decreases in inverse proportion to the Ga content in the structure. The Ga local environment and the modification of the phosphorus environments due to the Ga/Ca substitution in Ga-doped ß-TCP compounds are probed using (31)P and (71)Ga magic-angle spinning NMR. A decrease of the unit cell volume is observed with increasing Ga content, together with improved mechanical properties. Indeed, the compressive strength of these new bioceramics is enhanced in direct proportion of the Ga content, up to a 2.6-fold increase as compared to pure ß-TCP.


Assuntos
Fosfatos de Cálcio/química , Cerâmica/química , Gálio/química , Espectroscopia de Ressonância Magnética/normas , Isótopos de Fósforo , Padrões de Referência
5.
J Mater Sci Mater Med ; 22(3): 593-600, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21221733

RESUMO

Synthetic calcium phosphate ceramics as ß-tricalcium phosphate (Ca(3)(PO(4))(2); ß-TCP) are currently successfully used in human bone surgery. The aim of this work was to evaluate the influence of the presence of sodium ion in ß-TCP on its mechanical and biological properties. Five Na-doped-ß-TCP [Ca(10.5-x/2)Na(x)(PO(4))(7), 0 ≤ x ≤ 1] microporous pellets were prepared via solid phase synthesis, and their physico-chemical data (lattice compacity, density, porosity, compressive strength, infrared spectra) denote an increase of the mechanical properties and a decrease of the solubility when the sodium content is raised. On the other hand, the in vitro study of MC3T3-E1 cell activity (morphology, MTS assay and ALP activity) shows that the incorporation of sodium does not modify the bioactivity of the ß-TCP. These results strongly suggest that Na-doped-ß-TCP appear to be good candidates for their use as bone substitutes.


Assuntos
Fosfatos de Cálcio/química , Sódio/química , Células 3T3 , Fosfatase Alcalina/química , Animais , Substitutos Ósseos/química , Osso e Ossos/patologia , Cálcio/química , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Físico-Química/métodos , Humanos , Íons , Teste de Materiais , Camundongos , Porosidade , Estresse Mecânico
6.
Acta Biomater ; 127: 298-312, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831568

RESUMO

Immediately upon implantation, scaffolds for bone repair are exposed to the patient's blood. Blood proteins adhere to the biomaterial surface and the protein layer affects both blood cell functions and biomaterial bioactivity. Previously, we reported that 80-200 µm biphasic calcium phosphate (BCP) microparticles embedded in a blood clot, induce ectopic woven bone formation in mice, when 200-500 µm BCP particles induce mainly fibrous tissue. Here, in a LC-MS/MS proteomic study we compared the differentially expressed blood proteins (plasma and blood cell proteins) and the deregulated signaling pathways of these osteogenic and fibrogenic blood composites. We showed that blood/BCP-induced osteogenesis is associated with a higher expression of fibrinogen (FGN) and an upregulation of the Myd88- and NF-κB-dependent TLR4 signaling cascade. We also highlighted the key role of the LBP/CD14 proteins in the TLR4 activation of blood cells by BCP particles. As FGN is an endogenous ligand of TLR4, able to modulate blood composite stiffness, we propose that different FGN concentrations modify the blood clot mechanical properties, which in turn modulate BCP/blood composite osteoactivity through TLR4 signaling. The present findings provide an insight at the protein level, into the mechanisms leading to an efficient bone reconstruction by blood/BCP composites. STATEMENT OF SIGNIFICANCE: Upon implantation, scaffolds for bone repair are exposed to the patient's blood. Blood proteins adhere to bone substitute surface and this protein layer affects both biomaterial bioactivity and bone healing. Therefore, for the best outcome for patients, it is crucial to understand the molecular interactions between blood and bone scaffolds. Biphasic calcium phosphate (BCP) ceramics are considered as the gold standard in bone reconstruction surgery. Here, using proteomic analyses we showed that the osteogenic properties of 80-200 µm BCP particles embedded in a blood clot is associated with a higher expression of fibrinogen. Fibrinogen upregulates the Myd88- and NF-κB-dependent TLR4 pathway in blood cells and, BCP-induced TLR4 activation is mediated by the LBP and CD14 proteins.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Fosfatos de Cálcio , Cromatografia Líquida , Humanos , Hidroxiapatitas , Camundongos , Osteogênese , Alicerces Teciduais
7.
J Biomed Mater Res B Appl Biomater ; 109(1): 102-116, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32700831

RESUMO

In the field of bone regenerative medicine, injectable calcium phosphate cements (CPCs) are used for decades in clinics, as bone void fillers. Most often preformed polymers (e.g., hyaluronic acid, collagen, chitosan, cellulose ethers…) are introduced in the CPC formulation to make it injectable and improve its cohesion. Once the cement has hardened, the polymer is simply trapped in the CPC structure and no organic subnetwork is present. By contrast, in this work a CPC was combined with organic monomers that reticulated in situ so that a continuous biocompatible 3D polymeric subnetwork was formed in the CPC microstructure, resulting in a higher permeability of the CPC, which might allow to accelerate its in vivo degradation. Two options were investigated depending on whether the polymer was formed before the apatitic inorganic network or concomitantly. In the former case, conditions were found to reach a suitable rheology for easy injection of the composite. In addition, the in situ formed polymer was shown to strongly affect the size, density, and arrangement of the apatite crystals formed during the setting reaction, thereby offering an original route to modulate the microstructure and porosity of apatitic cements.


Assuntos
Apatitas/química , Materiais Biocompatíveis/química , Cimentos Ósseos/química , Substitutos Ósseos/química , Hidrogéis/química , Regeneração Óssea , Osso e Ossos , Força Compressiva , Humanos , Injeções , Teste de Materiais , Porosidade
8.
Eur Cell Mater ; 20: 379-92, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21154244

RESUMO

We recently demonstrated that blood clotted around biphasic calcium phosphate (BCP) microparticles constituted a composite biomaterial that could be used for bone defect filling. In addition, we showed that mononuclear cells, i.e. monocytes and lymphocytes, play a central role in the osteogenic effect of this biomaterial. Hypothesizing that osteoclast progenitors could participate to the pro-osteogenic effect of mononuclear cells we observed previously, we focus on this population through the study of mouse monocyte/macrophage cells (RAW264.7 cell line), as well as human pre-osteoclastic cells derived from mononuclear hematopoietic progenitor cells (monocytes-enriched fraction from peripheral blood). Using monocyte-derived osteoclast progenitors cultured within plasma clot/BCP microparticles composite, we aimed in the present report at the elucidation of transcriptional profiles of genes related to osteoclastogenesis and to bone remodelling. For both human and mouse monocytes, real-time PCR experiments demonstrated that plasma clot/BCP scaffold potentiated the expression of marker genes of the osteoclast differentiation such as Nfactc1, Jdp2, Fra2, Tracp and Ctsk. By contrast, Mmp9 was induced in mouse but not in human cells, and Ctr expression was down regulated for both species. In addition, for both mouse and human precursors, osteoclastic differentiation was associated with a strong stimulation of VegfC and Sdf1 genes expression. At last, using field-emission scanning electron microscopy analysis, we observed the interactions between human monocytes and BCP microparticles. As a whole, we demonstrated that plasma clot/BCP microparticles composite provided monocytes with a suitable microenvironment allowing their osteoclastic differentiation, together with the production of pro-angiogenic and chemoattractant factors.


Assuntos
Sangue , Fosfatos de Cálcio , Durapatita , Monócitos/citologia , Osteoclastos/citologia , Animais , Coagulação Sanguínea , Remodelação Óssea , Diferenciação Celular , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese , Tamanho da Partícula , Alicerces Teciduais
9.
J Biomed Mater Res B Appl Biomater ; 108(2): 367-376, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31033211

RESUMO

The in vivo resorption rate of two injectable apatitic calcium phosphate cements used in clinics (Graftys® HBS and NORIAN®) was compared, using a good laboratory practice (GLP) study based on an animal model of critical-sized bone defect. To rationalize the markedly different biological properties observed for both cements, key physical features were investigated, including permeability and water-accessible porosity, total porosity measured by mercury intrusion and gravimetry, and microstructure. Due to a different concept for creating porosity between the two cements investigated in this study, a markedly different microstructural arrangement of apatite crystals was observed in the intergranular space, which was found to significantly influence both the mechanical strength and in vivo degradation of the two calcium phosphate cements.


Assuntos
Apatitas/química , Apatitas/metabolismo , Cimentos Ósseos/química , Cimentos Ósseos/metabolismo , Alicerces Teciduais/química , Animais , Transplante Ósseo , Carbonato de Cálcio/química , Força Compressiva , Feminino , Derivados da Hipromelose/química , Técnicas In Vitro , Injeções , Teste de Materiais , Microesferas , Permeabilidade , Polissacarídeos/química , Porosidade , Coelhos , Solubilidade , Engenharia Tecidual
10.
Curr Drug Deliv ; 5(1): 59-63, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18220552

RESUMO

A partial review is proposed on the existing literature for the research performed in orthopedic implant used as drug delivery system. In the first part, an evaluation is given on the clinical need to deliver a drug in the surrounding of an implant. Secondly, a review of the clinical situation is developed for implants already used as drug delivery system. Experimental works performed for local delivery are reported. In particular, a description is given on the in vitro and in vivo studies where the implant is coated with different proteins or drugs. Finally, a conclusion is proposed on the next step in the development of orthopedic implant as drug delivery system mentioning also the industrial situation.


Assuntos
Sistemas de Liberação de Medicamentos , Implantes de Medicamento , Equipamentos Ortopédicos , Próteses e Implantes , Materiais Biocompatíveis , Humanos , Dispositivos de Fixação Ortopédica
11.
Drug Discov Today ; 23(11): 1897-1903, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29958991

RESUMO

Management of postoperative pain following bone surgery includes administration of local anesthetics (LAs). Smart delivery systems, including triggered systems, have been designed to provide a continuous release of LA in situ. However, these systems can provide a high level of LA locally. This review will examine the state-of-the-art regarding the LA delivery systems optimized for management of postoperative pain in bone surgery and will discuss the potential adverse effects of LAs on the overall pathways of bone healing, including the inflammation response phase, hemostasis phase, tissue repair phase and remodeling phase. There is a clinical need to document these effects and the potential impacts on the clinical outcome of the patient.


Assuntos
Anestésicos Locais/administração & dosagem , Osso e Ossos/cirurgia , Sistemas de Liberação de Medicamentos/efeitos adversos , Dor Pós-Operatória/tratamento farmacológico , Procedimentos Cirúrgicos Operatórios/métodos , Anestésicos Locais/efeitos adversos , Humanos
12.
J Pain ; 19(10): 1169-1180, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29772271

RESUMO

Postoperative pain after bone reconstruction is a serious complication that could jeopardize the global success of a surgery. This pain must be controlled and minimized during the first 3 to 4 postoperative days to prevent it from becoming chronic. In this study, a critical-size bone defect was created at the femoral distal end of rats and filled by an injectable calcium phosphate cement (CPC) loaded or not with local anesthetics (bupivacaine or ropivacaine). A functional evaluation of the gait was performed using the CatWalk system to compare the postoperative pain relief enhanced by the different CPCs after such a bone filling surgery. The results demonstrated significant pain relief during the short-term postoperative period, as shown by the print area and intensity parameters of the operated paw. At 24hours, the print area decreased by 65%, 42%, and 24%, and the intensity decreased by 25%, 9%, and 1% for unloaded, ropivacaine-loaded, and bupivacaine-loaded CPCs, respectively, compared with the preoperative values. Bupivacaine-loaded CPC provided an earlier return to full functional recovery than ropivacaine-loaded CPC. Moreover, the CPCs retained their biologic and mechanical properties. For all these reasons, anesthetic-loaded CPCs could be part of the global pain management protocol after bone reconstruction surgery such as iliac crest bone grafting procedures. PERSPECTIVE: Bupivacaine-loaded CPC provided an earlier return to full gait function than ropivacaine-loaded CPC, with preserved bone filling properties. Such analgesic CPCs deserve further in vivo investigation and may be part of the global pain management protocol after bone reconstruction or bone augmentation surgery such as iliac crest bone grafting.


Assuntos
Anestésicos Locais/administração & dosagem , Cimentos Ósseos/farmacologia , Manejo da Dor/métodos , Dor Pós-Operatória , Animais , Cimentos Ósseos/química , Osso e Ossos/cirurgia , Bupivacaína/administração & dosagem , Análise da Marcha , Procedimentos Ortopédicos/efeitos adversos , Medição da Dor/métodos , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/prevenção & controle , Ratos , Procedimentos de Cirurgia Plástica/efeitos adversos
13.
J Tissue Eng Regen Med ; 12(2): e854-e866, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28079305

RESUMO

Calcium phosphate (CaP)-based biomaterials are commonly used in bone reconstructive surgery to replace the damaged tissue, and can also serve as vectors for local drug delivery. Due to its inhibitory action on osteoclasts, the semi-metallic element gallium (Ga) is used for the systemic treatment of disorders associated with accelerated bone resorption. As it was demonstrated that Ga could be incorporated in the structure of CaP biomaterials, we investigated the biological properties of Ga-loaded CaP biomaterials. Culturing bone cells on Ga-CaP, we observed a decrease in osteoclast number and a downregulation of late osteoclastic markers expression, while Ga-CaP upregulated the expression of osteoblastic marker genes involved in the maturation of bone matrix. We next investigated in vivo bone reconstructive properties of different Ga-loaded biomaterials using a murine bone defect healing model. All implanted biomaterials showed a good osseointegration into the surrounding host tissue, accompanied by a successful bone ingrowth and bone marrow reconstruction, as evidenced by histological analysis. Moreover, quantitative micro-computed tomography analysis of implants revealed that Ga enhanced total defect filling. Lastly, we took advantage for the first time of a particular mode of non-linear microscopy (second harmonic generation) to quantify in vivo bone tissue reconstruction within a CaP bone substitute. By doing so, we showed that Ga exerted a positive impact on mature organized collagen synthesis. As a whole, our data support the hypothesis that Ga represents an attractive additive to CaP biomaterials for bone reconstructive surgery. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Materiais Biocompatíveis/farmacologia , Substitutos Ósseos/farmacologia , Fosfatos de Cálcio/farmacologia , Gálio/farmacologia , Animais , Apatitas/farmacologia , Cimentos Ósseos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Fêmur/efeitos dos fármacos , Humanos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Ratos
14.
J Biomed Mater Res A ; 106(7): 1842-1850, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29573560

RESUMO

We previously reported that biphasic calcium phosphate (BCP) microparticles embedded in a blood clot induces ectopic bone formation in mice and repairs a critical femoral defect in rat. The present pilot study aimed to evaluate in dog and in two models of large defects the efficacy of this composite named "blood for reconstruction of bone" (BRB). We show here that BRB is a cohesive biomaterial easy to prepare from dog autologous blood and to mold to fill large bone defects. First in a model of cylindrical femoral condyle defect, the BRB was compared with BCP particles alone. After 8 weeks, this revealed that the amount of mature bone was slightly and significantly higher with BRB than with BCP particles. Second, in a model consisting in a 2 cm-long critical interruptive defect of the ulna, the BRB was compared with autologous bone. After 6 months, we observed that implantation of BRB can induce the complete reconstruction of the defect and that newly formed bone exhibits high regenerative potential. Comparison with the results obtained with autologous bone grafting strongly suggests that the BRB might be an efficient biomaterial to repair large bone defects, as an alternative or in addition to autologous bone. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1842-1850, 2018.


Assuntos
Sangue/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Fosfatos de Cálcio/farmacologia , Microesferas , Animais , Regeneração Óssea/efeitos dos fármacos , Cães , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Fêmur/patologia , Implantes Experimentais , Osteogênese/efeitos dos fármacos , Projetos Piloto , Ulna/diagnóstico por imagem , Ulna/efeitos dos fármacos , Ulna/patologia , Microtomografia por Raio-X
15.
J Biomed Mater Res B Appl Biomater ; 106(8): 2786-2795, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29226553

RESUMO

An injectable purely apatitic calcium phosphate cement (CPC) was successfully combined to a water-soluble radiopaque agent (i.e., Xenetix® ), to result in an optimized composition that was found to be as satisfactory as poly(methyl methacrylate) (PMMA) formulations used for vertebroplasty, in terms of radiopacity, texture and injectability. For that purpose, the Xenetix dosage in the cement paste was optimized by injection of the radiopaque CPC in human cadaveric vertebrae under classical PMMA vertebroplasty conditions, performed by interventional radiologists familiar with this surgical procedure. When present in the cement paste up to 70 mg I mL-1 , Xenetix did not influence the injectability, cohesion, and setting time of the resulting composite. After hardening of the material, the same observation was made regarding the microstructure, mechanical strength and alpha-tricalcium phosphate to calcium deficient apatite transformation rate. Upon implantation in bone in a small animal model (rat), the biocompatibility of the Xenetix-containing CPC was evidenced. Moreover, an almost quantitative release of the contrast agent was found to occur rapidly, on the basis of in vitro static and dynamic quantitative studies simulating in vivo implantation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2786-2795, 2018.


Assuntos
Apatitas , Cimentos Ósseos , Meios de Contraste , Teste de Materiais , Coluna Vertebral , Vertebroplastia/métodos , Animais , Apatitas/química , Apatitas/farmacologia , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Meios de Contraste/química , Meios de Contraste/farmacologia , Humanos , Masculino , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacologia , Ratos , Ratos Endogâmicos Lew , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/cirurgia
16.
Biomaterials ; 28(6): 956-65, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17123598

RESUMO

Calcium phosphate cements (CPCs) are successfully used as bone substitutes in dentistry and orthopaedic applications. This study investigated the physico-chemical-mechanical properties of and in vitro biological properties (cell response) of CPCs prepared with amorphous calcium carbonate phosphate (ACCP) doped with magnesium (ACCP-Mg), zinc (ACCp-Zn) or fluoride (ACCP-F) ions. The experimental CPC consisted of alpha-TCP, doped ACCP, and MPCM powders as matrix and biphasic calcium phosphate (BCP) granules. X-ray diffraction analysis showed that the matrix converted to apatite with poor crystallinity (reflecting small crystal size) after setting for 24 h, while BCP remained apparently unchanged. Cements with ACCP-F (F-CPC) had shorter setting times and greater compressive strength compared to cements with ACCP-Mg (Mg-CPC) or ACCP-Zn (Zn-CPC). Scanning electron microscopy (SEM) showed that crystals set on Mg-CPC and Zn-CPC were smaller compared to those on F-CPC. The total porosity of Mg-CPC was greater compared to Zn-CPC or F-CPC. Osteoblast-like cells, MC3T3-E1, remained viable and maintained their ability to express alkaline phosphatase in contact with the CPCs with doped ACCPs.


Assuntos
Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Fosfatos de Cálcio/administração & dosagem , Fosfatos de Cálcio/química , Osteoblastos/efeitos dos fármacos , Células 3T3 , Animais , Tamanho Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dureza , Teste de Materiais , Camundongos , Conformação Molecular , Osteoblastos/citologia , Osteoblastos/fisiologia , Tamanho da Partícula , Porosidade , Propriedades de Superfície
17.
J Biomed Mater Res B Appl Biomater ; 80(1): 32-42, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16680686

RESUMO

In this work, calcium-deficient apatites (CDA) were synthesized by ammonia hydrolysis reaction of dicalcium phosphate dihydrate (DCPD; CaHPO4 x 2 H2O) to obtain biphasic calcium phosphates (BCP) without any extraionic substitution. The influence of three parameters was studied: temperature of the reaction (70 and 100 degrees C), time of the reaction (4 and 18 h), and the pressure (open and closed system). Experiments were made according to a factorial design method (FDM) allowing optimization of the number of samples as well as statistical analysis of results. Moreover, the influence of temperature (until 200 degrees C) was investigated. The crystal size of CDA was determined according to the Scherrer's formula and from Rietveld refinements taking the CDA anisotropy into account. The last method seems to be a reliable method to determine crystallite sizes of CDA, since crystallite sizes of CDA along <00l> and directions were accessible. The results describe the hydroxyapatite % (HA%) in BCP by a first-order polynomial equation in the experimental area studied and the HA content was found to increase by raising time and temperature of the reaction. Moreover, the type of reaction system (open/closed vessel) appeared to have little influence on HA%.


Assuntos
Amônia/química , Apatitas/síntese química , Fosfatos de Cálcio/química , Apatitas/química , Cristalização , Temperatura Alta , Hidrólise , Pressão
18.
J Clin Exp Dent ; 9(3): e410-e416, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28298984

RESUMO

BACKGROUND: There are different mouthwashes containing chlorhexidine in different concentrations, as well as various excipients. Chlorhexidine induce stains or discoloration in teeth and mucous membranes. The aim of this work was to design a model to reproduce in vitro staining associated with the use of different mouthwashes containing chlorhexidine. MATERIAL AND METHODS: We used as substrates of natural teeth and elephant ivory slices. Different incubation baths were conducted over 21 days in culture dishes at 37°C. At the beginning of experiment before incubation (D0) and after 21 days (D21) of incubation with different mouthwashes, pictures of substrates were taken in a standardized manner and an image analysis software was used to analyse and quantify the staining under the various conditions by using the 3 main colours (Red, Green, Blue, RGB). RESULTS: The results of this work demonstrate a very good reproducibility of the protocol, and secondly, a different expression statistically significant of the primary blue colour. We suggest that for a given concentration of chlorhexidine, the staining effects may vary depending on the excipients used. CONCLUSIONS: This replicable model, easy to implement over a relatively short duration, can be used for evaluation of existing mouthwashes, and to test the excipients anti discoloration proposed by manufacturers. Key words:In vitro, chlorhexidine, mouthwashes, dental stain, tooth discoloration.

19.
Sci Rep ; 7(1): 8224, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811630

RESUMO

In this work, we show that it is possible to overcome the limitations of solid-state MRI for rigid tissues due to large line broadening and short dephasing times by combining Magic Angle Spinning (MAS) with rotating pulsed field gradients. This allows recording ex vivo 31P 3D and 2D slice-selected images of rigid tissues and related biomaterials at very high magnetic field, with greatly improved signal to noise ratio and spatial resolution when compared to static conditions. Cross-polarization is employed to enhance contrast and to further depict spatially localized chemical variations in reduced experimental time. In these materials, very high magnetic field and moderate MAS spinning rate directly provide high spectral resolution and enable the use of frequency selective excitation schemes for chemically selective imaging. These new possibilities are exemplified with experiments probing selectively the 3D spatial distribution of apatitic hydroxyl protons inside a mouse tooth with attached jaw bone with a nominal isotropic resolution nearing 100 µm.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Isótopos de Fósforo , Prótons , Materiais Biocompatíveis , Imageamento Tridimensional , Espectroscopia de Ressonância Magnética/métodos , Especificidade de Órgãos , Imagens de Fantasmas
20.
Acta Biomater ; 57: 462-471, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28528118

RESUMO

Interaction of host blood with biomaterials is the first event occurring after implantation in a bone defect. This study aimed at investigating the cellular and molecular consequences arising at the interface between whole blood and biphasic calcium phosphate (BCP) particles. We observed that, due to calcium capture, BCP inhibited blood coagulation, and that this inhibition was reversed by calcium supplementation. Therefore, we studied the impact of calcium supplementation on BCP effects on blood cells. Comparative analysis of BCP and calcium supplemented-BCP (BCP/Ca) effects on blood cells showed that BCP as well as BCP/Ca induced monocyte proliferation, as well as a weak but significant hemolysis. Our data showed for the first time that calcium supplementation of BCP microparticles had anti-inflammatory properties compared to BCP alone that induced an inflammatory response in blood cells. Our results strongly suggest that the anti-inflammatory property of calcium supplemented-BCP results from its down-modulating effect on P2X7R gene expression and its capacity to inhibit ATP/P2X7R interactions, decreasing the NLRP3 inflammasome activation. Considering that monocytes have a vast regenerative potential, and since the excessive inflammation often observed after bone substitutes implantation limits their performance, our results might have great implications in terms of understanding the mechanisms leading to an efficient bone reconstruction. STATEMENT OF SIGNIFICANCE: Although scaffolds and biomaterials unavoidably come into direct contact with blood during bone defect filling, whole blood-biomaterials interactions have been poorly explored. By studying in 3D the interactions between biphasic calcium phosphate (BCP) in microparticulate form and blood, we showed for the first time that calcium supplementation of BCP microparticles (BCP/Ca) has anti-inflammatory properties compared to BCP-induced inflammation in whole blood cells and provided information related to the molecular mechanisms involved. The present study also showed that BCP, as well as BCP/Ca particles stimulate monocyte proliferation. As monocytes represent a powerful target for regenerative therapies and as an excessive inflammation limits the performance of biomaterials in bone tissue engineering, our results might have great implications to improve bone reconstruction.


Assuntos
Cálcio/farmacologia , Suplementos Nutricionais , Regulação para Baixo/efeitos dos fármacos , Hidroxiapatitas/farmacologia , Inflamassomos/imunologia , Monócitos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Animais , Regulação para Baixo/imunologia , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA