Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sci Total Environ ; 946: 174000, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38901589

RESUMO

Plastic overproduction and the resulting increase in consumption has made plastic pollution ubiquitous in all ecosystems. Recognizing this, the United Nations (UN) has started negotiations to establish a global treaty to end plastic pollution, especially in the marine environment. The basis of the treaty has been formulated in terms of turning off the tap, signaling the will to prevent plastic pollution at its source. Based on the distribution of plastic production by sector, the plastic packaging sector consumes the most plastic. The volume and variety of chemicals used in plastic packaging, most of which is single-use, is a major concern. Single-use plastics including packaging is one of the most dominant sources of plastic pollution. Plastic waste causes pollution in water, air and soil by releasing harmful chemicals into the environment and can also lead to exposure through contamination of food with micro- and nano-plastic particles and chemicals through packaging. Marine life and humans alike face risks from plastic uptake through bioaccumulation and biomagnification. While the contribution of plastics ingested to chemical pollution is relatively minor in comparison to other pathways of exposure, the effect of plastic waste on marine life and human consumption of seafood is beyond question. To reduce the long-term impact of plastic, it is crucial to establish a global legally binding instrument to ensure the implementation of upstream rather than downstream solutions. This will help to mitigate the impact of both chemicals and microplastics, including from packaging, on the environment.


Assuntos
Microplásticos , Plásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Medição de Risco , Humanos
2.
Environ Pollut ; 330: 121836, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201566

RESUMO

Single-use plastics and food packaging are the most common items polluting the environment, commonly identified in surveys and litter monitoring campaigns. There are pushes to ban these products from production and use in different regions, and to replace them with other materials viewed as "safer" or "more sustainable". Here, we address the potential environmental impacts of take-away cups and lids used for hot and cold beverages, consisting of plastic or paper. We produced leachates from plastic cups (polypropylene), lids (polystyrene), and paper cups (lined with polylactic acid), under conditions representative of plastic leaching in the environment. The packaging items were placed and left to leach in sediment and freshwater for up to four weeks, and we tested the toxicity of contaminated water and sediment separately. We used the model aquatic invertebrate Chironomus riparius and assessed multiple endpoints both on larval stages and on emergence to the adult phase. We observed a significant growth inhibition with all the materials tested when the larvae were exposed in contaminated sediment. Developmental delays were also observed for all materials, both in contaminated water and sediment. We investigated teratogenic effects via the analysis of mouthpart deformities in chironomid larvae, and observed significant effects on larvae exposed to polystyrene lid leachates (in sediment). Finally, a significant delay in time to emergence was observed for females exposed to paper cups leachates (in sediment). Overall, our results indicate that all the tested food packaging materials can have adverse effects on chironomids. These effects can be observed from one week of material leaching in environmental conditions, and tend to increase with increasing leaching time. Moreover, more effects were observed in contaminated sediment, indicating that benthic organisms might be especially at risk. This study highlights the risk posed by take-away packaging and their associated chemicals, once discarded into the environment.


Assuntos
Chironomidae , Poluentes Químicos da Água , Animais , Feminino , Plásticos/toxicidade , Larva , Poliestirenos/farmacologia , Poluentes Químicos da Água/análise , Água , Sedimentos Geológicos/química
3.
Sci Total Environ ; 896: 165153, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37385492

RESUMO

The textile industry's business model is currently unsustainable and systemic changes must be made. The transition to a circular textile economy can be a major lever for this. However, it faces multiple issues, including the (in)ability of current legislations to provide sufficient protection regarding hazardous chemicals in recirculating materials. It is therefore crucial to identify legislative gaps that prevent the implementation of a safe circular textile economy, and to identify which chemicals could jeopardize this process. With this study, we aim to identify hazardous substances that could be found in recirculated textiles, to identify and discuss gaps in current regulations covering chemicals in textiles, and to suggest solutions to ensure better safety of circular textiles. We compile and analyze data on 715 chemicals and their associated functions, textile production stage, and hazard data. We also present how chemicals have been regulated over time and discuss regulations' strengths and weaknesses in the perspective of circular economy. We finally discuss the recently proposed Ecodesign regulation, and which key point should be included in the future delegated acts. We found that most of the compiled chemicals present at least one recognized or suspected hazard. Among them, there were 228 CMR (carcinogenic, mutagenic, reprotoxic substances), 25 endocrine disruptors, 322 skin allergens or sensitizers, and 51 respiratory allergens or sensitizers. 30 chemicals completely or partially lack hazard data. 41 chemicals were found to present a risk for consumers, among which 15 recognized or suspected CMR and 36 recognized or suspected allergens/sensitizers. Following the analysis of regulations, we argue that an improved risk assessment of chemicals should consider chemicals specific hazardous properties and product's multiple life cycles, instead of being limited to the product's end-of-life stage. We especially argue that implementing a safe circular textile economy requires that chemicals of concern are eliminated from the market.


Assuntos
Substâncias Perigosas , Têxteis , União Europeia , Políticas , Alérgenos
4.
Mar Pollut Bull ; 180: 113755, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35642800

RESUMO

We assessed textile microfibers impacts on the three-spined stickleback, using synthetic and natural fibers originating from yarns or washer effluents. After water exposure at 200 fibers/L, we assessed fish survival, behavior, tissue morphology and hemoglobin concentration, and paid special attention to exposure characterization. We report quantitative fiber distribution in the exposure system, fiber size distribution, and contamination. We provide a fiber preparation procedure and exposure method intended to ensure accurate and stable concentrations over time. Following exposure, no effect was observed on the studied endpoints in any of the treatment conditions. We observed fast sinking of the fibers. Fish organs and feces contained 1.3% and 6.8% of recovered fibers, and 12.6% fibers were found adhered to the tank walls. We show that water renewals in semi-static exposures is a critical step for the maintenance of stable concentrations, and discuss the practical and/or methodological challenges associated to the study of microfibers.


Assuntos
Smegmamorpha , Animais , Peixes , Têxteis , Água
5.
J Hazard Mater ; 415: 125652, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33773244

RESUMO

Microplastics (MPs) have been identified as a threat to global ecosystems. Current projections indicate that the negative impacts of MPs will increase in the environment. Traditional toxicity testing does not account for the diversity of MP particles, the inherent diversity in potential exposure routes, and complex impacts in exposed organisms. Here we present and discuss factors influencing organismal exposure to MPs driven by fate and behavior of MPs in different environmental matrices and organisms behavioral niches. We then provide a structured classification of potential effects of MPs, chemical or particulate, generic or specific to MPs. Using these analyses, we discuss appropriateness and limitations of applying traditional, chemical-based ecotoxicity testing for the study of MPs, and propose practical recommendations and guidelines. Future laboratory based studies can be improved to increase understanding of potential real world effects of MPs by careful selection of appropriate exposure systems and conditions, test organism, MP characteristics, endpoints and required controls. We build upon recommendations provided in previous publications and complement them with a list of parameters and practical information that should be checked and/or reported in MP studies.

6.
Environ Pollut ; 236: 652-660, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29433106

RESUMO

Most microplastics are expected to sink and end up in marine sediments. However, very little is known concerning their potential impact on sediment-dwelling organisms. We studied the long-term impact of microplastic exposure on two sediment-dwelling bivalve species. Ennucula tenuis and Abra nitida were exposed to polyethylene microparticles at three concentrations (1; 10 and 25 mg/kg of sediment) for four weeks. Three size classes (4-6; 20-25 and 125-500 µm) were used to study the influence of size on microplastic ecotoxicity. Microplastic exposure did not affect survival, condition index or burrowing behaviour in either bivalve species. However, significant changes in energy reserves were observed. No changes were observed in protein, carbohydrate or lipid contents in E. tenuis, with the exception of a decrease in lipid content for one condition. However, total energy decreased in a dose-dependent manner for bivalves exposed to the largest particles. To the contrary, no significant changes in total energy were observed for A. nitida, although a significant decrease of protein content was observed for individuals exposed to the largest particles, at all concentrations. Concentration and particle size significantly influenced microplastic impacts on bivalves, the largest particles and higher concentrations leading to more severe effects. Several hypotheses are presented to explain the observed modulation of energy reserves, including the influence of microplastic size and concentration. Our results suggest that long-term exposure to microplastics at environmentally relevant concentrations can impact marine benthic biota.


Assuntos
Bivalves/fisiologia , Monitoramento Ambiental , Plásticos/análise , Poluentes Químicos da Água/análise , Animais , Biota , Bivalves/metabolismo , Exposição Ambiental , Plásticos/metabolismo , Poluentes Químicos da Água/metabolismo
7.
Environ Pollut ; 243(Pt B): 1217-1225, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30267918

RESUMO

The exponential production and use of plastics has generated increasing environmental release over the past decades, and microplastics (MPs) have been reported across all the oceans. Field studies have documented the occurrence of MPs in several species, but important knowledge gaps still remain. In the present study, we characterized the distribution of MPs in ten sediment-dwelling and epibenthic species representative of different habitat, feeding modes and trophic levels within the inner Oslofjord (Oslo, Norway), an area subjected to moderate anthropogenic pressures. Analysed species included fish, bivalves, echinoderms, crustaceans and polychaetes. MPs were present in all the species with a frequency up to 65% of positive individuals for some species. In most cases, 1 or 2 MPs were found per individual, but some organisms contained up to 7 particles. A total of 8 polymer typologies were identified, with PE and PP being the most common according to our extraction protocol. MP sizes ranged from 41 µm to lines as long as 9 mm. Our results indicate that occurrence of MPs in analysed biota is not influenced by organism habitat or trophic level, while characteristics and typology of polymers might be significantly affected by feeding mode of organisms.


Assuntos
Organismos Aquáticos/química , Ecossistema , Monitoramento Ambiental , Plásticos/análise , Poluentes Químicos da Água/análise , Animais , Bivalves , Peixes , Cadeia Alimentar , Noruega , Polímeros , Alimentos Marinhos/análise
8.
Environ Sci Pollut Res Int ; 24(20): 17081-17089, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28585007

RESUMO

We studied the fate and toxicity of two types of CeO2 NPs (bare or citrate-coated) in environmentally relevant conditions, using large indoor microcosms. Long-term exposure was carried out on a three-leveled freshwater trophic chain, comprising microbial communities as primary producers, chironomid larvae as primary consumers, and amphibian larvae as secondary consumers. Whereas coated NPs preferentially sedimented, bare NPs were mainly found in the water column. However, mass balance indicated low recovery (51.5%) for bare NPs, indicating possible NP loss, against 98.8% of recovery for coated NPs. NPs were rather chemically stable, with less than 4% of dissolution. Chironomid larvae ingested large amounts of NPs and were vectors of contamination for amphibian larvae. Although bioaccumulation in amphibian larvae was important (9.47 and 9.74 mg/kg for bare and coated NPs, respectively), no biomagnification occurred through the trophic chain. Finally, significant genotoxicity was observed in amphibian larvae, bare CeO2 NPs being more toxic than citrate-coated NPs. ᅟ.


Assuntos
Cério/toxicidade , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Anfíbios , Animais , Chironomidae , Água Doce , Larva , Nanopartículas Metálicas
9.
Nanotoxicology ; 10(2): 245-55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26152687

RESUMO

The toxicity of CeO2 NPs on an experimental freshwater ecosystem was studied in mesocosm, with a focus being placed on the higher trophic level, i.e. the carnivorous amphibian species Pleurodeles waltl. The system comprised species at three trophic levels: (i) bacteria, fungi and diatoms, (ii) Chironomus riparius larvae as primary consumers and (iii) Pleurodeles larvae as secondary consumers. NP contamination consisted of repeated additions of CeO2 NPs over 4 weeks, to obtain a final concentration of 1 mg/L. NPs were found to settle and accumulate in the sediment. No effects were observed on litter decomposition or associated fungal biomass. Changes in bacterial communities were observed from the third week of NP contamination. Morphological changes in CeO2 NPs were observed at the end of the experiment. No toxicity was recorded in chironomids, despite substantial NP accumulation (265.8 ± 14.1 mg Ce/kg). Mortality (35.3 ± 6.8%) and a mean Ce concentration of 13.5 ± 3.9 mg/kg were reported for Pleurodeles. Parallel experiments were performed on Pleurodeles to determine toxicity pathways: no toxicity was observed by direct or dietary exposures, although Ce concentrations almost reached 100 mg/kg. In view of these results, various toxicity mechanisms are proposed and discussed. The toxicity observed on Pleurodeles in mesocosm may be indirect, due to microorganism's interaction with CeO2 NPs, or NP dissolution could have occurred in mesocosm due to the structural complexity of the biological environment, resulting in toxicity to Pleurodeles. This study strongly supports the importance of ecotoxicological assessment of NPs under environmentally relevant conditions, using complex biological systems.


Assuntos
Cério/toxicidade , Ecotoxicologia/métodos , Cadeia Alimentar , Água Doce/microbiologia , Nanopartículas/toxicidade , Animais , Bactérias/efeitos dos fármacos , Biomassa , Cério/química , Chironomidae/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Fungos/efeitos dos fármacos , Larva/efeitos dos fármacos , Nanopartículas/química , Pleurodeles
11.
J Hazard Mater ; 283: 764-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25464320

RESUMO

Despite the increasing production and use of nanoparticles (NPs), there is a lack of knowledge about their environmental fate and ecotoxicity. Studies in environmentally relevant conditions are necessary to better assess these parameters, but such studies are rather rare. The present work represents first time that studies on engineered NPs using environmentally relevant exposure methods have been reviewed. These exposure methods differ from standardized protocols and can be classified into three groups: experimental trophic chains that allow study of the trophic route, multi-species exposures under laboratory conditions that allow for complex but controlled exposure and outdoor exposures that are more similar to environmentally realistic conditions. The majority of studies of micro- or mesocosms have focused on NP partitioning and bioaccumulation. The other major parameter that has been studied is NP ecotoxicity, which has been assessed in single species, in single species via the trophic route, and at the community level. The induction of biochemical defense systems, immunomodulation, effects on growth and reproduction, behavioral alterations and mortality have been used as indicators of major toxicity, depending on the species studied. The major effects of NPs on both microbial and algal communities include modifications of community compositions and diversities, decreased biomass and changes in community activities.


Assuntos
Ecotoxicologia/métodos , Monitoramento Ambiental/métodos , Nanopartículas/toxicidade , Poluentes do Solo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bactérias , Diatomáceas , Cadeia Alimentar , Plantas , Microbiologia do Solo
12.
Chemosphere ; 120: 230-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25086917

RESUMO

The aim of the present work is to provide wider information on the toxicity of cerium dioxide nanoparticles (CeO2 NPs) in aquatic environments, by studying the toxicity of two types of CeO2 NPs for four species (diatoms Nitzschia palea, the sediment-dwelling invertebrate Chironomus riparius, and the amphibian larvae Xenopus laevis and Pleurodeles waltl.). The two types of CeO2 NPs have different intrinsic properties: some of them are small citrate-coated spheres (2-5 nm), and the others are larger uncoated plates (20-60 nm). Acute toxicity (mortality at 48 or 96 h, depending on the test-organism) was assessed for the four species, from 0.1 to 100 mg L(-1) of NPs. Sub-lethal effects were assessed on chironomids exposed between 0.01 and 1 mg L(-1) of NPs. Mortality, growth inhibition and genotoxic effects were evaluated on amphibian larvae from 0.1 to 10 mg L(-1). Results reveal that no acute toxicity occurs on any species after short exposures, even at the highest concentrations. Mortality (35%) is observed on Xenopus larvae after 12d of exposure at the highest concentration of one type of NPs. No significant effects were observed on chironomids during chronic exposure. Xenopus larvae growth was inhibited from 1 mg L(-1) of both NPs while growth inhibition is observed on Pleurodeles only at the highest concentration of one type of NPs. No genotoxicity was observed on Xenopus but Pleurodeles exhibited dose-dependent genotoxic effects when exposed to one type of NPs. Observed differences in toxicity are discussed focusing on the studied compartment, routes of exposure, species and NPs.


Assuntos
Anfíbios/metabolismo , Cério/toxicidade , Chironomidae/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Nanopartículas Metálicas/toxicidade , Anfíbios/crescimento & desenvolvimento , Animais , Dano ao DNA , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento
13.
J Exp Med ; 208(1): 3-11, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21173102

RESUMO

Thymus-specific serine protease (TSSP) is a novel protease that may contribute to the generation of the peptide repertoire presented by MHC class II molecules in the thymus. Although TSSP deficiency has no quantitative impact on the development of CD4 T cells expressing a polyclonal T cell receptor (TCR) repertoire, the development of CD4 T cells expressing the OTII and Marilyn transgenic TCRs is impaired in TSSP-deficient mice. In this study, we assess the role of TSSP in shaping the functional endogenous polyclonal CD4 T cell repertoire by analyzing the response of TSSP-deficient mice to several protein antigens (Ags). Although TSSP-deficient mice responded normally to most of the Ags tested, they responded poorly to hen egg lysozyme (HEL). The impaired CD4 T cell response of TSSP-deficient mice to HEL correlated with significant alteration of the dominant TCR-ß chain repertoire expressed by HEL-specific CD4 T cells, suggesting that TSSP is necessary for the intrathymic development of cells expressing these TCRs. Thus, TSSP contributes to the diversification of the functional endogenous CD4 T cell TCR repertoire in the thymus.


Assuntos
Linfócitos T CD4-Positivos/enzimologia , Linfócitos T CD4-Positivos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Animais , Linfócitos T CD4-Positivos/química , Linfócitos T CD4-Positivos/citologia , Proliferação de Células , Camundongos , Dados de Sequência Molecular , Receptores de Antígenos de Linfócitos T/química , Serina Endopeptidases/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA