Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 16(7): 4317-21, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27299915

RESUMO

To date, quantum sources in the ultraviolet (UV) spectral region have been obtained only in semiconductor quantum dots. Color centers in wide bandgap materials may represent a more effective alternative. However, the quest for UV quantum emitters in bulk crystals faces the difficulty of combining an efficient UV excitation/detection optical setup with the capability of addressing individual color centers in potentially highly defective materials. In this work we overcome this limit by employing an original experimental setup coupling cathodoluminescence within a scanning transmission electron microscope to a Hanbury-Brown-Twiss intensity interferometer. We identify a new extremely bright UV single photon emitter (4.1 eV) in hexagonal boron nitride. Hyperspectral cathodoluminescence maps show a high spatial localization of the emission (∼80 nm) and a typical zero-phonon line plus phonon replica spectroscopic signature, indicating a point defect origin, most likely carbon substitutional at nitrogen sites. An additional nonsingle-photon broad emission may appear in the same spectral region, which can be attributed to intrinsic defects related to electron irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA