Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Molecules ; 25(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188070

RESUMO

Environmental and health concerns are driving the need for new materials in food packaging to replace poly- or perfluorinated compounds, aluminum layers, and petroleum-based polymers. Cellulose nanofibrils (CNF) have been shown by a number of groups to form excellent barrier layers to oxygen and grease. However, the influence of lignin-containing cellulose nanofibrils (LCNF) on film barrier properties has not been well reported. Herein, thin films (16 g/m2) from LCNF and CNF were formed on paper substrates through a filtration technique that should mimic the addition of material at the wet end of a paper machine. Surface, barrier and mechanical attributes of these samples were characterized. The analysis on the surface free energy and water contact angle pointed to the positive role of lignin distribution in inducing a certain degree of water repellency. The observed oxygen transmission rate (OTR) and water vapor permeability (WVP) values of LCNF-coated samples were nearly similar to those with CNF. However, the presence of lignin improved the oil proof performance; these layered designs exhibited an excellent resistance to grease (kit No. 12). The attained papers with LCNF coat were formed into bowl-like containers using metal molds and a facile oven drying protocol to evaluate their resistance to oil penetration over a longer period. The results confirmed the capability of LCNF layer in holding commercially available cooking oils with no evidence of leakage for over five months. Also, an improvement in the tensile strength and elongation at break was observed in the studied papers. Overall, the proposed packaging material possesses viable architecture and can be considered as a fully wood-based alternative for the current fluorocarbon systems.


Assuntos
Celulose/química , Embalagem de Alimentos , Lignina/química , Nanofibras/química , Óleos/química , Papel , Umidade , Nanofibras/ultraestrutura , Oxigênio/química , Tamanho da Partícula , Resistência à Tração , Termogravimetria , Vácuo
2.
Cellulose (Lond) ; 26(8): 5117-5131, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31130782

RESUMO

Cellulose nanofibers (CNFs) have great potential to be a layer in packaging materials because of their good barrier properties. When paper is coated with CNFs, they are difficult to distinguish from the base sheet. This issue creates challenges when trying to determine where CNFs migrate relative to the paper fibers during coating and drying. A three- dimensional analysis is possible by using confocal laser scanning microscopy (CLSM) if CNFs can be tagged with fluorescently active groups. In this study, CNFs were fluorescently tagged through adsorption of fluorescent dyes such as fluorescein isothiocyanate (FITC) and thioflavin by mixing with CNFs in their native suspension followed by purification. The adsorbed dye remained attached during typical coating procedures, low pH values, and high ionic strengths, but not for high pH and in contact with acetone. CNFs were also covalently tagged with FITC following methods reported in the literature as a comparison to already established methods for tagging cellulose nanocrystals (CNCs). Images of never dried samples indicated that covalently tagging CNFs altered the state of the fines dispersion, while dye adsorption did not. Coatings of the adsorbed dye tagged CNFs on paper were successfully imaged by CLSM since the concentration of dye in the water phase was low enough to provide a good contrast between regions of CNFs and paper. With this method, the location and potential migration of CNFs coated on paper were successfully determined for the first time to the best of our knowledge. CNF based coatings with solids larger than 2.8% were found to have a distinct layer of CNFs at the paper surface with little CNFs penetrating into the paper structure, but lower solids result in significant penetration into the paper.

3.
Cellulose (Lond) ; 25: 2303-2319, 2018 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-31839698

RESUMO

Cellulose is one of the most abundant natural polymers, is readily available, biodegradable, and inexpensive. Recently, interest is growing around nanoscale cellulose due to the sustainability of these materials, the novel properties, and the overall low environmental impact. The rapid expansion of nanocellulose uses in various applications makes the study of the toxicological properties of these materials of great importance to public health regulators. However, most of the current toxicological studies are highly conflicting, inconclusive, and contradictory. The major reasons for these discrepancies are the lack of standardized methods to produce industry-relevant reference nanocellulose and relevant characterization that will expand beyond the traditional cellulose characterization for applications. In order to address these issues, industry-relevant synthesis platforms were developed to produce nanocellulose of controlled properties that can be used as reference materials in toxicological studies. Herein, two types of nanocellulose were synthesized, cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC) using the friction grinding platform and an acid hydrolysis approach respectively. The nanocellulose structures were characterized extensively regarding their physicochemical properties, including testing for endotoxins and bacteria contamination.

4.
Eur Phys J E Soft Matter ; 39(2): 25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26920528

RESUMO

While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.


Assuntos
Temperatura Alta , Modelos Teóricos , Papel , Análise de Elementos Finitos , Porosidade , Volatilização
5.
Membranes (Basel) ; 11(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34436356

RESUMO

In this study, a simplified two-dimensional axisymmetric finite element analysis (FEA) model was developed, using COMSOL Multiphysics® software, to simulate the water vapor separation in a moisture-selective hollow-fiber membrane for the application of air dehumidification in wood drying processes. The membrane material was dense polydimethylsiloxane (PDMS). A single hollow fiber membrane was modelled. The mass and momentum transfer equations were simultaneously solved to compute the water vapor concentration profile in the single hollow fiber membrane. A water vapor removal experiment was conducted by using a lab-scale PDMS hollow fiber membrane module operated at constant temperature of 35 °C. Three operation parameters of air flow rate, vacuum pressure, and initial relative humidity (RH) were set at different levels. The final RH of dehydrated air was collected and converted to water vapor concentration to validate simulated results. The simulated results were fairly consistent with the experimental data. Both experimental and simulated results revealed that the water vapor removal efficiency of the membrane system was affected by air velocity and vacuum pressure. A high water vapor removal performance was achieved at a slow air velocity and high vacuum pressure. Subsequently, the correlation of Sherwood (Sh)-Reynolds (Re)-Schmidt (Sc) numbers of the PDMS membrane was established using the validated model, which is applicable at a constant temperature of 35 °C and vacuum pressure of 77.9 kPa. This study delivers an insight into the mass transport in the moisture-selective dense PDMS hollow fiber membrane-based air dehumidification process, with the aims of providing a useful reference to the scale-up design, process optimization and module development using hollow fiber membrane materials.

6.
Carbohydr Polym ; 267: 118221, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119175

RESUMO

Cost-effective, eco-friendly, and oil and grease-resistant food serving containers were made from wood flour with cellulose nanofibrils (CNF) or lignin-containing cellulose nanofibrils (LCNF) coating layers on the surface and in the bulk. The multi-layer wet-on-wet cellulose nanofiber composites were developed using a vacuum filtration process. All composites showed excellent oil/grease resistivity according to the "kit" test passing #12, the highest possible. The surface free energy and water contact angle showed that the composites with LCNF coating were more hydrophobic than the ones coated with CNF made from bleached pulp fiber. All composites had higher flexural and tensile properties compared with commercial food containers where the mechanical properties increased with increasing binder content and had acceptable thermal stability. Overall, the cellulose nanofiber composites possess excellent mechanical and barrier properties and can be considered as a wood-flour-based (pulp-free) and poly-fluoroalkyl substances (PFAs)-free alternative for oil-resistant commercial food serving containers.


Assuntos
Celulose/química , Embalagem de Alimentos , Nanofibras/química , Madeira/química , Módulo de Elasticidade , Temperatura Alta , Lignina/química , Tamanho da Partícula , Propriedades de Superfície , Resistência à Tração
7.
Carbohydr Polym ; 250: 117001, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049906

RESUMO

Cellulose nanofibrils (CNF) coatings are excellent grease barriers for biodegradable packaging. However, barrier properties are moisture sensitive, so hydrophobic components such as latexes or polymers are needed to impart moisture resistance, but incompatibility leads to poor dispersion. In this work, CNF modified with norbornenes was reacted with natural rubber (NR) latex in water to improve dispersion, coating formation, and coating moisture resistance by creating hybrid particles. Mixtures and reacted samples were coated through filtration onto paper. The hybrid particles improved NR retention and drainage rate as compared to the CNF/latex mixture. Hybrid particle coatings showed more uniform NR dispersion as compared to the mixtures, which formed NR and CNF layers. NR addition to coatings increased the water contact angle, reduced water absorption, and decreased the water vapor transmission rate. All coatings passed a 12-kit grease test before folding and the mixtures formed a crack-resistant CNF layer on the surface.

8.
Carbohydr Polym ; 230: 115672, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887920

RESUMO

Cellulose nanofibrils (CNF) can form impressive barrier layers but difficult rheological properties, brittleness, and sensitivity to moisture limit their use. To overcome these challenges, esterification reactions were performed in water without volatile organic solvents to create carbic-functionalized CNFs (cCNFs) that enabled versatile, thiol-norbornene secondary modifications. Chemical analysis determined that on average 5% anhydroglucose repeat units were functionalized with norbornene groups. Thiol-norbornene reactions added molecules with varying polar surface areas to the CNFs. Modifications did not change the film properties to a large extent. All CNF films were excellent grease barriers. The modifications significantly changed the rheology of CNF suspensions as the complex viscosity of the modified CNF was 27 times lower than unmodified CNFs. Modification also reduced the filtration rate by a factor of four. Surface modifications appeared to alter the colloidal forces between fibers in suspension that influence the flow and drainage properties.

9.
Carbohydr Polym ; 250: 117011, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049872

RESUMO

A comparative study on the morphology and physico-mechanical properties of cellulose nanofibrils (CNF) and lignocellulose nanofibrils (LCNF) produced using a pilot-scale ultra-refining facility in the form of slurries and films was conducted. Suspensions and films of CNF and LCNF at different fines contents from 50% to 100% were prepared from bleached kraft pulp and old corrugated container (OCC) feedstock, respectively. We showed that the effect of film density on mechanical properties of CNF and LCNF films can outweigh the effect of fines content (or degree of fibrillation) and consequently an equally strong and stiff film can be produced from lower grades of CNF or LCNF at higher densities. After density normalization, particle size was found to be the main determining factor. Finally we conclude that a CNF or LCNF suspension with 70 % fines will yield films as strong and stiff as the materials with 100 % fines providing an opportunity for cost reduction.

10.
NanoImpact ; 152019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32133424

RESUMO

The characterization of cellulose-based nanomaterial (CNM) suspensions in environmental and biological media is impaired because of their high carbon content and anisotropic shape, thus making it difficult to derive structure activity relationships (SAR) in toxicological studies. Here, a standardized method for the dispersion preparation and characterization of cellulose nanofibrils (CNF) and nanocrystals (CNC) in biological and environmental media was developed. Specifically, electron microscopy was utilized and allowed to specify optimum practices for efficiently suspending CNF and CNC in water and cell culture medium. Furthermore, a technique for measuring the in vitro particle kinetics of CNF and CNC suspended in cell culture medium utilizing fluorescently tagged materials was developed to assess the delivery rate of such CNM at the bottom of the well. Interestingly, CNF were shown to settle and create a loosely packed layer at the bottom of cell culture wells within a few hours. On the contrary, CNC settled gradually at a significantly slower rate, highlighting the discordance between administered and delivered mass dose. This work is both novel and urgent in the field of environmental health and safety as it introduces well-defined techniques for the dispersion and characterization of emerging, cellulose-based engineered nanomaterials. It also provides useful insights to the in vitro behavior of suspended anisotropic nanomaterials in general, which should enable dosimetry and comparison of toxicological data across laboratories as well as promote the safe and sustainable use of nanotechnology.

11.
Sci Rep ; 9(1): 14584, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601951

RESUMO

The novel use of aqueous suspensions of cellulose nanofibrils (CNF) as an adhesive/binder in lignocellulosic-based composite manufacture requires the removal of a considerable amount of water from the furnish during processing, necessitating thorough understanding of the dewatering behavior referred to as "contact dewatering". The dewatering behavior of a wood-CNF particulate system (wet furnish) was studied through pressure filtration tests, centrifugation, and characterization of hard-to-remove (HR) water, i.e. moisture content in the wet furnish at the transition between constant rate part and the falling rate part of evaporative change in mass from an isothermal thermogravimetric analysis (TGA). The effect of wood particle size thereby particle specific surface area on the dewatering performance of wet furnish was investigated. Permeability coefficients of wet furnish during pressure filtration experiments were also determined based on Darcy's law for volumetric flow through a porous medium. Results revealed that specific particle surface area has a significant effect on the dewatering of wet furnish where dewatering rate significantly increased at higher specific particle surface area levels. While the permeability of the systems decreased over time in almost all cases, the most significant portion of dewatering occurred at very early stages of dewatering (less than 200 seconds) leading to a considerable increase in instantaneous dewatering when CNF particles come in contact with wood particles.

12.
Environ Sci Nano ; 6(5): 1516-1526, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844523

RESUMO

The rapid adoption of nanocellulose-based engineered nanomaterials (CNM) by many industries generates environmental health and safety (EHS) concerns. This work presents the development of fluorescently tagged CNM which can be used to study their interactions with biological systems. Specifically, cellulose nano-fibrils and cellulose nano-crystals with covalently attached fluorescein isothiocyanate (FITC) molecules on their surface were synthesized. The fluorescence of the FITC-tagged materials was assessed along with potential FITC detachment under pH conditions encountered in the human gastrointestinal tract, in intracellular compartments, and in cell culture media. Finally, the potential cytotoxicity due to the presence of FITC molecules on the surface of CNM was assessed using a cellular gut epithelium model. The results showed that neither FITC-CNF nor FITC-CNC were cytotoxic and that they have a comparable bioactivity to their untagged counterparts, rendering them suitable for biological studies.

13.
ACS Nano ; 12(7): 6469-6479, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29874029

RESUMO

Engineered nanomaterials are increasingly added to foods to improve quality, safety, or nutrition. Here we report the ability of ingested nanocellulose (NC) materials to reduce digestion and absorption of ingested fat. In the small intestinal phase of an acellular simulated gastrointestinal tract, the hydrolysis of free fatty acids (FFA) from triglycerides (TG) in a high-fat food model was reduced by 48.4% when NC was added at 0.75% w/w to the food, as quantified by pH stat titration, and by 40.1% as assessed by fluorometric FFA assay. Furthermore, translocation of TG and FFA across an in vitro cellular model of the intestinal epithelium was significantly reduced by the presence of 0.75% w/w NC in the food (TG by 52% and FFA by 32%). Finally, in in vivo experiments, the postprandial rise in serum TG 1 h after gavage with the high fat food model was reduced by 36% when 1.0% w/w NC was administered with the food. Scanning electron microscopy and molecular dynamics studies suggest two primary mechanisms for this effect: (1) coalescence of fat droplets on fibrillar NC (CNF) fibers, resulting in a reduction of available surface area for lipase binding and (2) sequestration of bile salts, causing impaired interfacial displacement of proteins at the lipid droplet surface and impaired solubilization of lipid digestion products. Together these findings suggest a potential use for NC, as a food additive or supplement, to reduce absorption of ingested fat and thereby assist in weight loss and the management of obesity.


Assuntos
Celulose/metabolismo , Digestão , Gorduras/metabolismo , Aditivos Alimentares/metabolismo , Triglicerídeos/metabolismo , Animais , Celulose/química , Aditivos Alimentares/química , Humanos , Hidrólise , Absorção Intestinal , Intestinos/fisiologia , Masculino , Nanoestruturas/química , Ratos Wistar
14.
Polymers (Basel) ; 9(9)2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-30965696

RESUMO

Cellulose nanofibrils (CNF) were spun into filaments directly from suspension without the aid of solvents. The influence of starting material properties and drying temperature on the properties of filaments produced from three different CNF suspensions was studied. Refiner-produced CNF was ground using a microgrinder at grinding times of 50 and 100 minutes. Filament spinning was performed using a syringe pump-heat gun setting at three drying temperatures of 210 °C, 320 °C and 430 °C. The structure of starting CNF materials was first evaluated using a combination of optical and atomic force microscopy (AFM) techniques. Surface free energy analysis and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR⁻FTIR) were used to study changes in hydrophobicity due to grinding. Morphology of the filaments was studied using SEM micrographs. The influence of different drying temperatures and grinding times on mechanical properties of the CNF filaments were further investigated through tensile tests and results were compared using statistical analysis .It was observed that drying temperature did not significantly influence the tensile properties of the filaments while cellulose nanofiber suspension type (grinding time) had a significant influence and improved mechanical properties. FTIR results confirmed an increase in crystallinity index and decrease in hydroxyl group availability due to grinding.

15.
ACS Appl Mater Interfaces ; 8(38): 25520-8, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27588437

RESUMO

A novel laminate system comprising of sheets of paper bound together using cellulose nanofibrils (CNF) is manufactured and characterized. Bonding properties of CNF were first confirmed through a series of peeling tests. Composite laminates were manufactured from sheets of paper bonded together using CNF at two different consistencies, press times, and press temperatures. Mechanical properties of the laminates in tension and bending were characterized and the results were statistically analyzed. Elastic modulus and strength results met or exceeded those of a short glass fiber reinforced polypropylene and various natural fiber-filled polypropylene composites as well as some wood and paper based laminates. Stiffness properties, assuming perfect bonding within the laminates, were successfully estimated through a classical laminated plate theory (CLPT) with only 2-10% variation compared to experimental results. Laminates, together with CNF-peeled surfaces, were observed and qualitatively analyzed by SEM imaging. Physical properties, namely, water absorption and thickness swelling were measured. Swelling was controlled by the addition of a small percentage of a cross-linking additive.

16.
J Colloid Interface Sci ; 270(2): 396-405, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14697706

RESUMO

The short-term uptake of a fluid by porous media is important in a number of processes, such as in coating and printing operations. We present a new model to predict short-term absorption into real pore geometries taking into account fluid properties, surface forces, and the complex pore geometry. Two assumptions are made to reduce the complexity of the situation: (1) the flow resistance between pores can be estimated from pore geometry or air permeability measurements, and (2) the volume of fluid in the constrictions between pores is small. Pores can be connected in any manner and can be in any arrangement. The absorption rates predicted by the model are compared to experimental values obtained with coating layers of plastic, kaolin, and calcium carbonate pigments. These coatings are characterized in terms of void fraction, pore size, contact angle, and permeability. The comparison is good for water and inks when the air permeability of the porous layer is used to determine the average resistance to flow in the sample. These resistance values are close to the values obtained from pore geometries estimated from particle packing simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA