Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37107218

RESUMO

The Rhodanese-fold is a ubiquitous structural domain present in various protein subfamilies associated with different physiological functions or pathophysiological conditions in humans. Proteins harboring a Rhodanese domain are diverse in terms of domain architecture, with some representatives exhibiting one or several Rhodanese domains, fused or not to other structural domains. The most famous Rhodanese domains are catalytically active, thanks to an active-site loop containing an essential cysteine residue which allows for catalyzing sulfur transfer reactions involved in sulfur trafficking, hydrogen sulfide metabolism, biosynthesis of molybdenum cofactor, thio-modification of tRNAs or protein urmylation. In addition, they also catalyse phosphatase reactions linked to cell cycle regulation, and recent advances proposed a new role into tRNA hydroxylation, illustrating the catalytic versatility of Rhodanese domain. To date, no exhaustive analysis of Rhodanese containing protein equipment from humans is available. In this review, we focus on structural and biochemical properties of human-active Rhodanese-containing proteins, in order to provide a picture of their established or putative key roles in many essential biological functions.

2.
Chem Biol Interact ; 202(1-3): 70-7, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23237860

RESUMO

Until the last decade, two unrelated aldehyde dehydrogenase (ALDH) superfamilies, i.e. the phosphorylating and non-phosphorylating superfamilies, were known to catalyze the oxidation of aldehydes to activated or non-activated acids. However, a third one was discovered by the crystal structure of a bifunctional enzyme 4-hydroxy-2-ketovalerate aldolase/acylating acetaldehyde dehydrogenase (DmpFG) from Pseudomonas sp. strain CF600 (Manjasetty et al., Proc. Natl. Acad. Sci. USA 100 (2003) 6992-6997). Indeed, DmpF exhibits a non-phosphorylating CoA-dependent ALDH activity, but is structurally related to the phosphorylating superfamily. In this study, we undertook the characterization of the catalytic and structural properties of MhpEF from Escherichia coli, an ortholog of DmpFG in which MhpF converts acetaldehyde, produced by the cleavage of 4-hydroxy-2-ketovalerate by MhpE, into acetyl-CoA. The kinetic data obtained under steady-state and pre-steady-state conditions show that the aldehyde dehydrogenase, MhpF, is active as a monomer, a unique feature relative to the phosphorylating and non-phosphorylating ALDH superfamilies. Our results also reveal that the catalytic properties of MhpF are not dependent on its oligomeric state, supporting the hypothesis of a structurally and catalytically independent entity. Moreover, the transthioesterification is shown to be rate-limiting and, when compared with a chemical model, its catalytic efficiency is increased 10(4)-fold. Therefore, CoA binding to MhpF increases its reactivity and optimizes its positioning relative to the thioacylenzyme intermediate, thus enabling the formation of an efficient deacylation complex.


Assuntos
Aldeído Oxirredutases/química , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Coenzima A/química , Coenzima A/metabolismo , Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Catálise , Cristalização/métodos , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Cinética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA