Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Infect Dis ; 226(7): 1276-1285, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35524969

RESUMO

BACKGROUND: Staphylococcus aureus dominates the lung microbiota of children with cystic fibrosis (CF) and persistent clones are able to establish chronic infection for years, having a direct deleterious impact on lung function. However, in this context, the exact contribution of S. aureus to the decline in respiratory function in children with CF is not elucidated. METHODS: To investigate the contribution of persistent S. aureus clones in CF disease, we undertook the analysis of sequential isogenic isolates recovered from 15 young CF patients. RESULTS: Using an air-liquid infection model, we observed a strong correlation between S. aureus adaption in the lung (late isolates), low toxicity, and proinflammatory cytokine secretion. Conversely, early isolates appeared to be highly cytotoxic but did not promote cytokine secretion. We found that cytokine secretion was dependent on staphylococcal protein A (Spa), which was selectively expressed in late compared to early isolates as a consequence of dysfunctional agr quorum-sensing system. Finally, we demonstrated the involvement of TNF-α receptor 1 signaling in the inflammatory response of airway epithelial cells to these lung-adapted S. aureus isolates. CONCLUSIONS: Our results suggest an unexpected direct role of bacterial lung adaptation in the progression of chronic lung disease by promoting a proinflammatory response through acquired agr dysfunction.


Assuntos
Fibrose Cística , Infecções Estafilocócicas , Criança , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Humanos , Pulmão/metabolismo , Infecções Estafilocócicas/microbiologia , Proteína Estafilocócica A , Staphylococcus aureus/fisiologia , Fator de Necrose Tumoral alfa
2.
mBio ; 12(3): e0027621, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34126772

RESUMO

Antibiotic-resistant Staphylococcus aureus strains constitute a major public health concern worldwide and are responsible for both health care- and community-associated infections. Here, we establish a robust and easy-to-implement model of oral S. aureus infection using Drosophila melanogaster larvae that allowed us to follow the fate of S. aureus at the whole-organism level as well as the host immune responses. Our study demonstrates that S. aureus infection triggers H2O2 production by the host via the Duox enzyme, thereby promoting antimicrobial peptide production through activation of the Toll pathway. Staphylococcal catalase mediates H2O2 neutralization, which not only promotes S. aureus survival but also minimizes the host antimicrobial response, hence reducing bacterial clearance in vivo. We show that while catalase expression is regulated in vitro by the accessory gene regulatory system (Agr) and the general stress response regulator sigma B (SigB), it no longer depends on these two master regulators in vivo. Finally, we confirm the versatility of this model by demonstrating the colonization and host stimulation capabilities of S. aureus strains belonging to different sequence types (CC8 and CC5) as well as of two other bacterial pathogens, Salmonella enterica serovar Typhimurium and Shigella flexneri. Thus, the Drosophila larva can be a general model to follow in vivo the innate host immune responses triggered during infection by human pathogens. IMPORTANCE The pathogenicity of methicillin-resistant S. aureus (MRSA) strains relies on their ability to produce a wide variety of tightly regulated virulence factors. Current in vivo models to analyze host-pathogen interactions are limited and difficult to manipulate. Here, we have established a robust and reliable model of oral S. aureus infection using Drosophila melanogaster larvae. We show that S. aureus stimulates host immunity through the production of reactive oxygen species (ROS) and antimicrobial peptide (AMP) and that ROS potentialize AMP gene expression. S. aureus catalase plays a key role in this complex environment and acts in vivo independently from SigB and Agr control. We propose that fly larvae can provide a general model for studying the colonization capabilities of human pathogens.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Staphylococcus aureus Resistente à Meticilina/imunologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Espécies Reativas de Oxigênio/imunologia , Animais , Modelos Animais de Doenças , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Regulação Bacteriana da Expressão Gênica , Larva/imunologia , Larva/microbiologia , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/imunologia , Espécies Reativas de Oxigênio/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA