Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin J Sport Med ; 34(1): 61-68, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285595

RESUMO

OBJECTIVE: To investigate the link between dysfunction of the blood-brain barrier (BBB) and exposure to head impacts in concussed football athletes. DESIGN: This was a prospective, observational pilot study. SETTING: Canadian university football. PARTICIPANTS: The study population consisted of 60 university football players, aged 18 to 25. Athletes who sustained a clinically diagnosed concussion over the course of a single football season were invited to undergo an assessment of BBB leakage. INDEPENDENT VARIABLES: Head impacts detected using impact-sensing helmets were the measured variables. MAIN OUTCOME MEASURES: Clinical diagnosis of concussion and BBB leakage assessed using dynamic contrast-enhanced MRI (DCE-MRI) within 1 week of concussion were the outcome measures. RESULTS: Eight athletes were diagnosed with a concussion throughout the season. These athletes sustained a significantly higher number of head impacts than nonconcussed athletes. Athletes playing in the defensive back position were significantly more likely to sustain a concussion than remain concussion free. Five of the concussed athletes underwent an assessment of BBB leakage. Logistic regression analysis indicated that region-specific BBB leakage in these 5 athletes was best predicted by impacts sustained in all games and practices leading up to the concussion-as opposed to the last preconcussion impact or the impacts sustained during the game when concussion occurred. CONCLUSIONS: These preliminary findings raise the potential for the hypothesis that repeated exposure to head impacts may contribute to the development of BBB pathology. Further research is needed to validate this hypothesis and to test whether BBB pathology plays a role in the sequela of repeated head trauma.


Assuntos
Concussão Encefálica , Futebol Americano , Humanos , Barreira Hematoencefálica/lesões , Concussão Encefálica/diagnóstico , Canadá , Futebol Americano/lesões , Estudos Prospectivos , Universidades
2.
Angew Chem Int Ed Engl ; 63(20): e202401552, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38497693

RESUMO

The switching behavior of the novel hybrid material (FA)Na[Fe(CN)5(NO)].H2O (1) in response to temperature (T), light irradiation and electric field (E) is studied using in situ X-ray diffraction (XRD). Crystals of 1 display piezoelectricity, pyroelectricity, second and third harmonic generation. XRD shows that the FA+ are disordered at room-temperature, but stepwise cooling from 273-100 K induces gradual ordering, while cooling under an applied field (E=+40 kVcm-1) induces a sudden phase change at 140 K. Structural-dynamics calculations suggest the field pushes the system into a region of the structural potential-energy surface that is otherwise inaccessible, demonstrating that application of T and E offers an effective route to manipulating the crystal chemistry of these materials. Photocrystallography also reveals photoinduced linkage isomerism, which coexists with but is not correlated to other switching behaviors. These experiments highlight a new approach to in situ studies of hybrid materials, providing insight into the structure-property relationships that underpin their functionality.

3.
Rheumatology (Oxford) ; 62(2): 685-695, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35699463

RESUMO

OBJECTIVE: Extensive blood-brain barrier (BBB) leakage has been linked to cognitive impairment in SLE. This study aimed to examine the associations of brain functional connectivity (FC) with cognitive impairment and BBB dysfunction among patients with SLE. METHODS: Cognitive function was assessed by neuropsychological testing (n = 77). Resting-state FC (rsFC) between brain regions, measured by functional MRI (n = 78), assessed coordinated neural activation in 131 regions across five canonical brain networks. BBB permeability was measured by dynamic contrast-enhanced MRI (n = 61). Differences in rsFC were compared between SLE patients with cognitive impairment (SLE-CI) and those with normal cognition (SLE-NC), between SLE patients with and without extensive BBB leakage, and with healthy controls. RESULTS: A whole-brain rsFC comparison found significant differences in intra-network and inter-network FC in SLE-CI vs SLE-NC patients. The affected connections showed a reduced negative rsFC in SLE-CI compared with SLE-NC and healthy controls. Similarly, a reduced number of brain-wide connections was found in SLE-CI patients compared with SLE-NC (P = 0.030) and healthy controls (P = 0.006). Specific brain regions had a lower total number of brain-wide connections in association with extensive BBB leakage (P = 0.011). Causal mediation analysis revealed that 64% of the association between BBB leakage and cognitive impairment in SLE patients was mediated by alterations in FC. CONCLUSION: SLE patients with cognitive impairment had abnormalities in brain rsFC which accounted for most of the association between extensive BBB leakage and cognitive impairment.


Assuntos
Disfunção Cognitiva , Lúpus Eritematoso Sistêmico , Humanos , Barreira Hematoencefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Cognição/fisiologia , Imageamento por Ressonância Magnética , Lúpus Eritematoso Sistêmico/complicações
4.
Inorg Chem ; 62(33): 13467-13475, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37545093

RESUMO

Currently, the intrinsic instability of organic-inorganic hybrid perovskite nanocrystals (PNCs) at high temperature and high humidity still stands as a big barrier to hinder their potential applications in optoelectronic devices. Herein, we report the controllable in-situ-grown PNCs in polyvinylidene fluoride (PVDF) polymer with profoundly enhanced hygrothermal stability. It is found that the introduced tetradecylphosphonic acid (TDPA) ligand enables significantly improved binding to the surface of PNCs via a strong covalently coordinated P-O-Pb bond, as evidenced by density functional theory calculations and X-ray photoelectron spectroscopy analyses. Accordingly, such enhanced binding could not only make efficient passivation of the surface defects of PNCs but also enable the remarkably suppressed desorption of the ligand from the PNCs under high-temperature environments. Consequently, the photoluminescence quantum yield (PL QY) of the as-fabricated MAPbBr3-PNCs@PVDF film exhibits almost no decay after exposure to air at 333 K over 1800 h. Once the temperatures are increased from 293 to 353 K, their PL intensity can be kept as 88.6% of the initial value, much higher than that without the TDPA ligand (i.e., 42.4%). Moreover, their PL QY can be maintained above 50% over 1560 h (65 days) under harsh working conditions of 333 K and 90% humidity. As a proof of concept, the as-assembled white light-emitting diodes display a large color gamut of 125% National Television System Committee standard, suggesting their promising applications in backlight devices.

5.
Brain ; 145(6): 2049-2063, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34927674

RESUMO

The mechanisms underlying the complications of mild traumatic brain injury, including post-concussion syndrome, post-impact catastrophic death, and delayed neurodegeneration remain poorly understood. This limited pathophysiological understanding has hindered the development of diagnostic and prognostic biomarkers and has prevented the advancement of treatments for the sequelae of mild traumatic brain injury. We aimed to characterize the early electrophysiological and neurovascular alterations following repetitive mild traumatic brain injury and sought to identify new targets for the diagnosis and treatment of individuals at risk of severe post-impact complications. We combined behavioural, electrophysiological, molecular, and neuroimaging techniques in a rodent model of repetitive mild traumatic brain injury. In humans, we used dynamic contrast-enhanced MRI to quantify blood-brain barrier dysfunction after exposure to sport-related concussive mild traumatic brain injury. Rats could clearly be classified based on their susceptibility to neurological complications, including life-threatening outcomes, following repetitive injury. Susceptible animals showed greater neurological complications and had higher levels of blood-brain barrier dysfunction, transforming growth factor ß (TGFß) signalling, and neuroinflammation compared to resilient animals. Cortical spreading depolarizations were the most common electrophysiological events immediately following mild traumatic brain injury and were associated with longer recovery from impact. Triggering cortical spreading depolarizations in mild traumatic brain injured rats (but not in controls) induced blood-brain barrier dysfunction. Treatment with a selective TGFß receptor inhibitor prevented blood-brain barrier opening and reduced injury complications. Consistent with the rodent model, blood-brain barrier dysfunction was found in a subset of human athletes following concussive mild traumatic brain injury. We provide evidence that cortical spreading depolarization, blood-brain barrier dysfunction, and pro-inflammatory TGFß signalling are associated with severe, potentially life-threatening outcomes following repetitive mild traumatic brain injury. Diagnostic-coupled targeting of TGFß signalling may be a novel strategy in treating mild traumatic brain injury.


Assuntos
Concussão Encefálica , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Concussão Encefálica/etiologia , Humanos , Neuroimagem , Ratos , Fator de Crescimento Transformador beta/metabolismo
6.
Neuroimage ; 258: 119349, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35690258

RESUMO

Top-down processes such as expectations play a key role in pain perception. In specific contexts, inferred threat of impending pain can affect perceived pain more than the noxious intensity. This biasing effect of top-down threats can affect some individuals more strongly than others due to differences in fear of pain. The specific characteristics of intrinsic brain characteristics that mediate the effects of top-down threat bias are mainly unknown. In this study, we examined whether threat bias is associated with structural and functional brain connectivity. The variability in the top-down bias was mapped to the microstructure of white matter in diffusion weighted images (DWI) using MRTrix3. Mean functional connectivity of five canonical resting state networks was tested for association with bias scores and with the identified DWI metrics. We found that the fiber density of the splenium of the corpus callosum was significantly low in individuals with high top-down threat bias (FWE corrected with 5000 permutations, p < 0.05). The mean functional connectivity within the language/memory and between language/memory and default mode networks predicted the bias scores. Functional connectivity within language memory networks predicted the splenium fiber density, higher pain catastrophizing and lower mindful awareness. Probabilistic tractography showed that the identified region in the splenium connected several sensory regions and high-order parietal regions between the two hemispheres, indicating the splenium's role in sensory integration. These findings demonstrate that individuals who show more change in pain with changes in the threat of receiving a stronger noxious stimulus have lower structural connectivity in the pathway necessary for integrating top-down cue information with bottom-up sensory information. Conversely, systems involved in memory recall, semantic and self-referential processing are more strongly connected in people with top-down threat bias.


Assuntos
Encéfalo , Rede Nervosa , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Dor/diagnóstico por imagem , Percepção da Dor
7.
J Magn Reson Imaging ; 56(5): 1448-1456, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35285996

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is increasingly common worldwide and can lead to the development of cirrhosis, liver failure and cancer. Virtual magnetic resonance elastography (VMRE), which is based on a shifted apparent diffusion coefficient (sADC), is a potential noninvasive method to assess liver fibrosis without the specialized hardware and expertise required to implement traditional MR elastography (MRE). Although hepatic steatosis is known to confound ADC measurements, previous studies using VMRE have not corrected for hepatic fat fraction. PURPOSE: To compare VMRE, corrected for the confounding effects of unsuppressed fat signal, to MRE and biopsy in subjects with suspected NAFLD. STUDY TYPE: Prospective, cross-sectional. POPULATION: A total of 49 adult subjects with suspected NAFLD (18 male; median age 55 years, range 33-74 years) who underwent liver biopsy. FIELD STRENGTH/SEQUENCE: 3T, diffusion-weighted spin echo planar, chemical-shift encoded (IDEAL IQ) and MRE sequences. ASSESSMENT: Two observers drew regions of interest on sADC, proton density fat fraction and MRE-derived stiffness maps. Fat-corrected sADC values were used to calculate the diffusion-based shear modulus according to the VMRE method. Predicted fibrosis stage for MRE and VMRE was determined using previously published cut-off values. STATISTICAL TESTS: The relationship between VMRE and MRE was assessed with least-squares linear regression (coefficient of determination, R2 ). Agreement between MRE and VMRE-predicted fibrosis stage was evaluated with a kappa coefficient and accuracy compared using McNemar's test. A one-way ANOVA determined if the fat-corrected sADC (VMRE) and MRE differed by fibrosis stage. A P value < 0.05 was considered statistically significant. RESULTS: Least squares regression of VMRE vs. MRE revealed R2  = 0.046 and a slope that was not significantly different from zero (P = 0.14). There was no agreement between MRE and VMRE-predicted fibrosis stage (kappa = -0.01). The proportion of correctly predicted fibrosis stage was significantly higher for MRE compared to VMRE. MRE was significantly associated with fibrosis stage, but fat-corrected sADC was not (P = 0.24). DATA CONCLUSION: Fat-corrected VMRE was not associated with fibrosis stage in NAFLD. Further investigation is required if VMRE is to be considered in subjects with NAFLD. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.


Assuntos
Técnicas de Imagem por Elasticidade , Hepatopatia Gordurosa não Alcoólica , Adulto , Idoso , Estudos Transversais , Técnicas de Imagem por Elasticidade/métodos , Fibrose , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Prótons
8.
Inorg Chem ; 61(44): 17746-17758, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36282246

RESUMO

To provide new insights for understanding the influence of B site cations on the structure in chlorometallate materials of the form ABn+Cln+2, we report novel organic-inorganic hybrid metallates (OIHMs) incorporating histammonium (HistNH3) dications and various transition-metal and main group B site cations. Single crystals of OIHMs with the basic formula (HistNH3Mn+Cln+2, M = Fe, Co, Ni, Cu, Zn, Cd, Hg, Sb, Sn, Pb, Bi) were grown and their structures characterized by single-crystal X-ray crystallography. HistNH3CoCl4, HistNH3ZnCl4, and HistNH3SbCl5 were crystallized in a non-centrosymmetric space group and were subsequently studied with piezoresponse force microscopy (PFM). While bulk measurements of crystals and poly(vinylidene difluoride) (PVDF)/metallate composite films exhibited low bulk response values, the surface-measured local response values using PFM were 5.17 pm/V for HistNH3CoCl4, 22.6 pm/V for HistNH3ZnCl4, and 2.9 pm/V for HistNH3SbCl5 compared with 2.50 pm/V for PVDF reference samples. The magnitudes of the d33 coefficient, net dipole, and cation-Cl bond dipole obtained from the density functional theory calculations confirm the higher response in HistNH3ZnCl4 compared to HistNH3CoCl4. Density of states and crystal orbital Hamilton population analysis indicate that the higher net dipole in HistNH3ZnCl4 compared to HistNH3CoCl4 is due to the lower hybridization of the M-Cl bond.

9.
Small ; 17(51): e2103960, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34672078

RESUMO

As one important subclass of piezoelectric materials, pyroelectric materials have caused increasing attention owing to the unique pyroelectric effect induced by spontaneous polarization, showing broad promising application prospects due to various electrical responses induced by time-dependent temperature variation. This review systematically introduces the pyroelectric effect and evaluation of pyroelectric materials and follows by analyzing and concluding the novel properties corresponding to four kinds of main pyroelectric materials. The emphasis of this review focuses on several significant and practical applications of pyroelectric materials in thermal energy harvesting from the external environment, pyroelectric sensing, and imaging, even some electrochemical applications including hydrogen generation, wastewater treatment, sterilization, and disinfection. Finally, the development direction of pyroelectric materials, potential challenges and opportunities in the future are all discussed and proposed. Through systematical conclusion and analysis of the latest research progress in the recent two decades, this review may provide significant guide and inspiration in the development of pyroelectric materials.


Assuntos
Eletricidade , Temperatura Alta , Temperatura
10.
NMR Biomed ; 34(5): e4241, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-31898379

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a growing health problem, and a major challenge in NAFLD management is identifying which patients are at risk of progression to more serious disease. Simple measurements of liver fat content are not strong predictors of clinical outcome, but biomarkers related to fatty acid composition (ie, saturated vs. unsaturated fat) may be more effective. MR spectroscopic imaging (MRSI) methods allow spatially resolved, whole-liver measurements of chemical composition but are traditionally limited by slow acquisition times. In this work we present an accelerated MRSI acquisition based on spin echo single point imaging (SE-SPI), which, using appropriate sampling and compressed sensing reconstruction, allows free-breathing acquisition in a mouse model of fatty liver disease. After validating the technique's performance in oil/water phantoms, we imaged mice that had received a normal diet or a methionine and choline deficient (MCD) diet, some of which also received supplemental injections of iron to mimic hepatic iron overload. SE-SPI was more resistant to the line-broadening effects of iron than single-voxel spectroscopy measurements, and was consistently able to measure the amplitudes of low-intensity spectral peaks that are important to characterizing fatty acid composition. In particular, in the mice receiving the MCD diet, SE-SPI showed a significant decrease in a metric associated with unsaturated fat, which is consistent with the literature. This or other related metrics may therefore offer more a specific biomarker of liver health than fat content alone. This preclinical study is an important precursor to clinical testing of the proposed method. MR-based quantification of fatty acid composition may allow for improved characterization of non-alcoholic fatty liver disease. A spectroscopic imaging method with appropriate sampling strategy allows whole-liver mapping of fat composition metrics in a free-breathing mouse model. Changes in metrics like the surrogate unsaturation index (UIs) are visible in mice receiving a diet which induces fat accumulation in the liver, as compared to a normal diet; such metrics may prove useful in future clinical studies of liver disease.


Assuntos
Compressão de Dados , Ácidos Graxos/análise , Espectroscopia de Ressonância Magnética , Algoritmos , Animais , Colina , Dieta , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Metionina/deficiência , Camundongos Endogâmicos BALB C , Imagens de Fantasmas
11.
Brain ; 143(6): 1826-1842, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32464655

RESUMO

Repetitive mild traumatic brain injury in American football players has garnered increasing public attention following reports of chronic traumatic encephalopathy, a progressive tauopathy. While the mechanisms underlying repetitive mild traumatic brain injury-induced neurodegeneration are unknown and antemortem diagnostic tests are not available, neuropathology studies suggest a pathogenic role for microvascular injury, specifically blood-brain barrier dysfunction. Thus, our main objective was to demonstrate the effectiveness of a modified dynamic contrast-enhanced MRI approach we have developed to detect impairments in brain microvascular function. To this end, we scanned 42 adult male amateur American football players and a control group comprising 27 athletes practicing a non-contact sport and 26 non-athletes. MRI scans were also performed in 51 patients with brain pathologies involving the blood-brain barrier, namely malignant brain tumours, ischaemic stroke and haemorrhagic traumatic contusion. Based on data from prolonged scans, we generated maps that visualized the permeability value for each brain voxel. Our permeability maps revealed an increase in slow blood-to-brain transport in a subset of amateur American football players, but not in sex- and age-matched controls. The increase in permeability was region specific (white matter, midbrain peduncles, red nucleus, temporal cortex) and correlated with changes in white matter, which were confirmed by diffusion tensor imaging. Additionally, increased permeability persisted for months, as seen in players who were scanned both on- and off-season. Examination of patients with brain pathologies revealed that slow tracer accumulation characterizes areas surrounding the core of injury, which frequently shows fast blood-to-brain transport. Next, we verified our method in two rodent models: rats and mice subjected to repeated mild closed-head impact injury, and rats with vascular injury inflicted by photothrombosis. In both models, slow blood-to-brain transport was observed, which correlated with neuropathological changes. Lastly, computational simulations and direct imaging of the transport of Evans blue-albumin complex in brains of rats subjected to recurrent seizures or focal cerebrovascular injury suggest that increased cellular transport underlies the observed slow blood-to-brain transport. Taken together, our findings suggest dynamic contrast-enhanced-MRI can be used to diagnose specific microvascular pathology after traumatic brain injury and other brain pathologies.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/patologia , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Animais , Atletas , Barreira Hematoencefálica/metabolismo , Encéfalo/patologia , Isquemia Encefálica/patologia , Encefalopatia Traumática Crônica/patologia , Imagem de Tensor de Difusão , Futebol Americano/lesões , Humanos , Masculino , Microvasos/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia , Tauopatias/patologia , Estados Unidos , Substância Branca/patologia , Proteínas tau/metabolismo
12.
Angew Chem Int Ed Engl ; 60(25): 13725-13736, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33411416

RESUMO

While the fascinating field of soft machines has grown rapidly over the last two decades, the materials they are constructed from have remained largely unchanged during this time. Parallel activities have led to significant advances in the field of dynamic polymer networks, leading to the design of three-dimensionally cross-linked polymeric materials that are able to adapt and transform through stimuli-induced bond exchange. Recent work has begun to merge these two fields of research by incorporating the stimuli-responsive properties of dynamic polymer networks into soft machine components. These include dielectric elastomers, stretchable electrodes, nanogenerators, and energy storage devices. In this Minireview, we outline recent progress made in this emerging research area and discuss future directions for the field.

13.
Ann Rheum Dis ; 79(12): 1580-1587, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33004325

RESUMO

OBJECTIVES: To examine the association between blood-brain barrier (BBB) integrity, brain volume and cognitive dysfunction in adult patients with systemic lupus erythematosus (SLE). METHODS: A total of 65 ambulatory patients with SLE and 9 healthy controls underwent dynamic contrast-enhanced MRI scanning, for quantitative assessment of BBB permeability. Volumetric data were extracted using the VolBrain pipeline. Global cognitive function was evaluated using a screening battery consisting of tasks falling into five broad cognitive domains, and was compared between patients with normal versus extensive BBB leakage. RESULTS: Patients with SLE had significantly higher levels of BBB leakage compared with controls (p=0.04). Extensive BBB leakage (affecting over >9% of brain volume) was identified only in patients with SLE (16/65; 24.6%), who also had smaller right and left cerebral grey matter volumes compared with controls (p=0.04). Extensive BBB leakage was associated with lower global cognitive scores (p=0.02), and with the presence of impairment on one or more cognitive tasks (p=0.01). CONCLUSION: Our findings provide evidence for a link between extensive BBB leakage and changes in both brain structure and cognitive function in patients with SLE. Future studies should investigate the mechanisms underlying BBB-mediated cognitive impairment, validate the diagnostic utility of BBB imaging, and determine the potential of targeting the BBB as a therapeutic strategy in patients with SLE.


Assuntos
Barreira Hematoencefálica/patologia , Encéfalo/patologia , Disfunção Cognitiva/patologia , Substância Cinzenta/patologia , Lúpus Eritematoso Sistêmico/patologia , Adulto , Permeabilidade Capilar , Disfunção Cognitiva/etiologia , Feminino , Humanos , Lúpus Eritematoso Sistêmico/complicações , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
14.
J Psychiatry Neurosci ; 45(2): 125-133, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674733

RESUMO

Background: Cortical folding is essential for healthy brain development. Previous studies have found regional reductions in cortical folding in adult patients with psychotic illness. It is unknown whether these neuroanatomical markers are present in youth with subclinical psychotic symptoms. Methods: We collected MRIs and examined the local gyrification index in a sample of 110 youth (mean age ± standard deviation 14.0 ± 3.7 yr; range 9­25 yr) with a family history of severe mental illness: 48 with psychotic symptoms and 62 without. Images were processed using the Human Connectome Pipeline and FreeSurfer. We tested for group differences in local gyrification index using mixed-effects generalized linear models controlling for age, sex and familial clustering. Sensitivity analysis further controlled for intracranial volume, IQ, and stimulant and cannabis use. Results: Youth with psychotic symptoms displayed an overall trend toward lower cortical folding across all brain regions. After adjusting for multiple comparisons and confounders, regional reductions were localized to the frontal and occipital lobes. Specifically, the medial (B = ­0.42, pFDR = 0.04) and lateral (B = ­0.39, pFDR = 0.04) orbitofrontal cortices as well as the cuneus (B = ­0.47, pFDR = 0.03) and the pericalcarine (B = ­0.45, pFDR = 0.03) and lingual (B = ­0.38, pFDR = 0.04) gyri. Limitations: Inference about developmental trajectories was limited by the cross-sectional data. Conclusion: Psychotic symptoms in youth are associated with cortical folding deficits, even in the absence of psychotic illness. The current study helps clarify the neurodevelopmental basis of psychosis at an early stage, before medication, drug use and other confounds have had a persistent effect on the brain.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Transtornos Psicóticos/diagnóstico por imagem , Adolescente , Adulto , Córtex Cerebral/crescimento & desenvolvimento , Criança , Estudos Transversais , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/crescimento & desenvolvimento , Humanos , Imageamento por Ressonância Magnética , Masculino , Lobo Occipital/diagnóstico por imagem , Lobo Occipital/crescimento & desenvolvimento , Transtornos Psicóticos/epidemiologia , Fatores de Risco , Adulto Jovem
15.
MAGMA ; 33(4): 469-481, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31872356

RESUMO

OBJECTIVE: Tracking the migration of superparamagnetic iron oxide (SPIO)-labeled immune cells in vivo is valuable for understanding the immunogenic response to cancer and therapies. Quantitative cell tracking using TurboSPI-based R2* mapping is a promising development to improve accuracy in longitudinal studies on immune recruitment. However, off-resonance fat signal isochromats lead to modulations in the signal time-course that can be erroneously fit as R2* signal decay, overestimating the density of labeled cells, while excluding voxels with fat-typical modulations results in underestimation of cell density in voxels with mixed content. Approaches capable of accurate R2* estimation in the presence of fat are needed. METHODS: We propose a dual-decay (separate R2f* and R2w* for fat and water) Dixon-based signal model that accounts for the presence of fat in a voxel to provide better estimates of SPIO-induced dephasing. This model was tested in silico, in phantoms with varying quantities of fat and SPIO-labeled cells, and in 5 mice injected with SPIO-labeled CD8+ T cells. RESULTS: In silico single voxel simulations illustrate how the proposed dual-decay model provides stable R2w* estimates that are invariant to fat content. The proposed model outperforms previous methods when applied to in vitro samples of SPIO-labeled cells and oil prepared with oil content ≥ 15%. Preliminary in vivo results show that, compared to previous methods, the dual-decay model improves the balance of R2* mapping in fat-dense areas, which will yield more reliable analysis in future cell tracking studies. DISCUSSION: The proposed model is a promising tool for quantitative TurboSPI R2* cell tracking, with further refinements offering the possibility of better specificity and sensitivity.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Compostos Férricos/química , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Contagem de Células , Rastreamento de Células/métodos , Simulação por Computador , Meios de Contraste , Dextranos , Técnicas In Vitro , Nanopartículas de Magnetita , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Normal , Imagens de Fantasmas , Reprodutibilidade dos Testes , Água
16.
Chem Soc Rev ; 48(15): 4178-4280, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31206105

RESUMO

In recent years, nanocrystals of metal sulfide materials have attracted scientific research interest for renewable energy applications due to the abundant choice of materials with easily tunable electronic, optical, physical and chemical properties. Metal sulfides are semiconducting compounds where sulfur is an anion associated with a metal cation; and the metal ions may be in mono-, bi- or multi-form. The diverse range of available metal sulfide materials offers a unique platform to construct a large number of potential materials that demonstrate exotic chemical, physical and electronic phenomena and novel functional properties and applications. To fully exploit the potential of these fascinating materials, scalable methods for the preparation of low-cost metal sulfides, heterostructures, and hybrids of high quality must be developed. This comprehensive review indicates approaches for the controlled fabrication of metal sulfides and subsequently delivers an overview of recent progress in tuning the chemical, physical, optical and nano- and micro-structural properties of metal sulfide nanocrystals using a range of material fabrication methods. For hydrogen energy production, three major approaches are discussed in detail: electrocatalytic hydrogen generation, powder photocatalytic hydrogen generation and photoelectrochemical water splitting. A variety of strategies such as structural tuning, composition control, doping, hybrid structures, heterostructures, defect control, temperature effects and porosity effects on metal sulfide nanocrystals are discussed and how they are exploited to enhance performance and develop future energy materials. From this literature survey, energy conversion currently relies on a limited range of metal sulfides and their composites, and several metal sulfides are immature in terms of their dissolution, photocorrosion and long-term durability in electrolytes during water splitting. Future research directions for innovative metal sulfides should be closely allied to energy and environmental issues, along with their advanced characterization, and developing new classes of metal sulfide materials with well-defined fabrication methods.

17.
Chem Soc Rev ; 48(16): 4424-4465, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31270524

RESUMO

This review provides a detailed overview on the latest developments in the design and control of the interface in polymer based composite dielectrics for energy storage applications. The methods employed for interface design in composite systems are described for a variety of filler types and morphologies, along with novel approaches employed to build hierarchical interfaces for multi-scale control of properties. Efforts to achieve a close control of interfacial properties and geometry are then described, which includes the creation of either flexible or rigid polymer interfaces, the use of liquid crystals and developing ceramic and carbon-based interfaces with tailored electrical properties. The impact of the variety of interface structures on composite polarization and energy storage capability are described, along with an overview of existing models to understand the polarization mechanisms and quantitatively assess the potential benefits of different structures for energy storage. The applications and properties of such interface-controlled materials are then explored, along with an overview of existing challenges and practical limitations. Finally, a summary and future perspectives are provided to highlight future directions of research in this growing and important area.

18.
Angew Chem Int Ed Engl ; 59(20): 7808-7812, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32104966

RESUMO

We demonstrate that trimethylamine borane can exhibit desirable piezoelectric and pyroelectric properties. The material was shown to be able operate as a flexible film for both thermal sensing, thermal energy conversion and mechanical sensing with high open circuit voltages (>10 V). A piezoelectric coefficient of d33 ≈10-16 pC N-1 , and pyroelectric coefficient of p≈25.8 µC m-2 K-1 were achieved after poling, with high pyroelectric figure of merits for sensing and harvesting, along with a relative permittivity of ϵ 33 σ ≈ 6.3.

19.
Soft Matter ; 15(5): 825-832, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30566171

RESUMO

Ferroelectrets are piezoelectrically-active polymer foams that can convert externally applied loads into electric charge for sensor or energy harvesting applications. Existing processing routes used to create pores of the desired geometry and degree of alignment appropriate for ferroelectrets are based on complex mechanical stretching and chemical dissolution steps. In this work, we present the first demonstration of the use of freeze casting as a cost effective and environmentally friendly approach to produce polymeric ferroelectrets. The pore morphology, phase analysis, relative permittivity and direct piezoelectric charge coefficient (d33) of porous poly(vinylidene fluoride) (PVDF) based ferroelectrets with porosity volume fractions ranging from 24% to 78% were analysed. The long-range alignment of pore channels produced during directional freezing is shown to be beneficial in forming a highly polarised structure and high d33 ∼ 264 pC N-1 after breakdown of air within the pore channels during corona poling. This new approach opens a way to create tailored pore structures and voids in ferroelectret materials for transducer applications related to sensors and vibration energy harvesting.

20.
Soft Matter ; 15(40): 8001-8011, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31468049

RESUMO

New materials and technologies in sensing and actuation have led to the development of soft actuators and robots for biomedical systems, assistive devices, exploration and rescue. The use of integrated actuation-sensing materials in such systems is gaining interest, but there are few examples where the body of the actuator or soft robot acts as the sensing element. The development of smart soft actuators that have inherent sensing capabilities can provide advantages of high sensitivity, ease of manufacture and cost efficiency, without impairing actuator dynamics. To achieve this goal, we have prepared soft actuators using piezoresistive composites based on a silicone matrix impregnated with short conductive carbon fibres. The optimum carbon fibre volume fraction to achieve a frequency independent conductivity and piezoresistive response was determined, with in situ mechanical and electrical testing to quantify the piezoresistive properties. The frequency dependent electrical properties and sensitivity of the composites with deformation was explained on the basis of a microstructural resistor-capacitor network model. The piezoresistive composites were used to successfully manufacture a pneumatic soft finger actuator where the resistance change of the actuator body was able to monitor deformation with applied pressure. The creation of soft actuators with an inherent sensing capability is a promising approach for control and operation of future soft robots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA