Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Am Chem Soc ; 146(2): 1388-1395, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38176024

RESUMO

Site-specific covalent conjugation offers a powerful tool to identify and understand protein-protein interactions. In this study, we discover that sulfur fluoride exchange (SuFEx) warheads effectively crosslink the Escherichia coli acyl carrier protein (AcpP) with its partner BioF, a key pyridoxal 5'-phosphate (PLP)-dependent enzyme in the early steps of biotin biosynthesis by targeting a tyrosine residue proximal to the active site. We identify the site of crosslink by MS/MS analysis of the peptide originating from both partners. We further evaluate the BioF-AcpP interface through protein crystallography and mutational studies. Among the AcpP-interacting BioF surface residues, three critical arginine residues appear to be involved in AcpP recognition so that pimeloyl-AcpP can serve as the acyl donor for PLP-mediated catalysis. These findings validate an evolutionary gain-of-function for BioF, allowing the organism to build biotin directly from fatty acid biosynthesis through surface modifications selective for salt bridge formation with acidic AcpP residues.


Assuntos
Biotina , Fluoretos , Compostos de Enxofre , Espectrometria de Massas em Tandem , Biotina/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo
2.
Biochemistry ; 62(21): 3050-3060, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37813856

RESUMO

Over the past decade, advances in genomics have identified thousands of additional protein-coding small open reading frames (smORFs) missed by traditional gene finding approaches. These smORFs encode peptides and small proteins, commonly termed micropeptides or microproteins. Several of these newly discovered microproteins have biological functions and operate through interactions with proteins and protein complexes within the cell. CYREN1 is a characterized microprotein that regulates double-strand break repair in mammalian cells through interaction with Ku70/80 heterodimer. Ku70/80 binds to and stabilizes double-strand breaks and recruits the machinery needed for nonhomologous end join repair. In this study, we examined the biochemical properties of CYREN1 to better understand and explain its cellular protein interactions. Our findings support that CYREN1 is an intrinsically disordered microprotein and this disordered structure allows it to enriches several proteins, including a newly discovered interaction with SF3B1 via a distinct short linear motif (SLiMs) on CYREN1. Since many microproteins are predicted to be disordered, CYREN1 is an exemplar of how microproteins interact with other proteins and reveals an unknown scaffolding function of this microprotein that may link NHEJ and splicing.


Assuntos
Peptídeos , Proteínas , Animais , Proteínas/genética , Peptídeos/genética , Fases de Leitura Aberta , Mamíferos/genética , Micropeptídeos
3.
Cell ; 133(1): 164-76, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18394996

RESUMO

Plants grown at high densities perceive a decrease in the red to far-red (R:FR) ratio of incoming light, resulting from absorption of red light by canopy leaves and reflection of far-red light from neighboring plants. These changes in light quality trigger a series of responses known collectively as the shade avoidance syndrome. During shade avoidance, stems elongate at the expense of leaf and storage organ expansion, branching is inhibited, and flowering is accelerated. We identified several loci in Arabidopsis, mutations in which lead to plants defective in multiple shade avoidance responses. Here we describe TAA1, an aminotransferase, and show that TAA1 catalyzes the formation of indole-3-pyruvic acid (IPA) from L-tryptophan (L-Trp), the first step in a previously proposed, but uncharacterized, auxin biosynthetic pathway. This pathway is rapidly deployed to synthesize auxin at the high levels required to initiate the multiple changes in body plan associated with shade avoidance.


Assuntos
Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Triptofano/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Vias Biossintéticas , Escuridão , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Alinhamento de Sequência , Triptofano/biossíntese , Triptofano Transaminase/química , Triptofano Transaminase/genética , Triptofano Transaminase/metabolismo
4.
Nat Chem Biol ; 16(8): 850-856, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32284603

RESUMO

In plants, phenylalanine biosynthesis occurs via two compartmentally separated pathways. Overexpression of petunia chorismate mutase 2 (PhCM2), which catalyzes the committed step of the cytosolic pathway, increased flux in cytosolic phenylalanine biosynthesis, but paradoxically decreased the overall levels of phenylalanine and phenylalanine-derived volatiles. Concomitantly, the levels of auxins, including indole-3-acetic acid and its precursor indole-3-pyruvic acid, were elevated. Biochemical and genetic analyses revealed the existence of metabolic crosstalk between the cytosolic phenylalanine biosynthesis and tryptophan-dependent auxin biosynthesis mediated by an aminotransferase that uses a cytosolic phenylalanine biosynthetic pathway intermediate, phenylpyruvate, as an amino acceptor for auxin formation.


Assuntos
Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Fenilalanina/biossíntese , Vias Biossintéticas/genética , Citosol/metabolismo , Indóis , Fenilalanina/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Plantas/metabolismo , Triptofano
5.
Proc Natl Acad Sci U S A ; 114(13): E2563-E2570, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28320959

RESUMO

The peroxisome proliferator-activated receptor (PPAR) family comprises three subtypes: PPARα, PPARγ, and PPARδ. PPARδ transcriptionally modulates lipid metabolism and the control of energy homeostasis; therefore, PPARδ agonists are promising agents for treating a variety of metabolic disorders. In the present study, we develop a panel of rationally designed PPARδ agonists. The modular motif affords efficient syntheses using building blocks optimized for interactions with subtype-specific residues in the PPARδ ligand-binding domain (LBD). A combination of atomic-resolution protein X-ray crystallographic structures, ligand-dependent LBD stabilization assays, and cell-based transactivation measurements delineate structure-activity relationships (SARs) for PPARδ-selective targeting and structural modulation. We identify key ligand-induced conformational transitions of a conserved tryptophan side chain in the LBD that trigger reorganization of the H2'-H3 surface segment of PPARδ. The subtype-specific conservation of H2'-H3 sequences suggests that this architectural remodeling constitutes a previously unrecognized conformational switch accompanying ligand-dependent PPARδ transcriptional regulation.


Assuntos
PPAR delta/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Estrutura Terciária de Proteína
6.
Biotechnol Bioeng ; 115(6): 1394-1402, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29457628

RESUMO

Polyketides are attractive compounds for uses ranging from biorenewable chemical precursors to high-value therapeutics. In many cases, synthesis in a heterologous host is required to produce these compounds in industrially relevant quantities. The type III polyketide synthase 2-pyrone synthase (2-PS) from Gerbera hybrida was used for the production of triacetic acid lactone (TAL) in Saccharomyces cerevisiae. Initial in vitro characterization of 2-PS led to the identification of active site variants with improved kinetic properties relative to wildtype. Further in vivo evaluation in S. cerevisiae suggested certain 2-PS mutations altered enzyme stability during fermentation. In vivo experiments also revealed beneficial cysteine to serine mutations that were not initially explored due to their distance from the active site of 2-PS, leading to the design of additional 2-PS enzymes. While these variants showed varying catalytic efficiencies in vitro, they exhibited up to 2.5-fold increases in TAL production when expressed in S. cerevisiae. Coupling of the 2-PS variant [C35S,C372S] to an engineered S. cerevisiae strain led to over 10 g/L TAL at 38% of theoretical yield following fed-batch fermentation, the highest reported to date. Our studies demonstrate the success of a coupled in vitro/in vivo approach to engineering enzymes and provide insight on cysteine-rich enzymes and design principles toward their use in non-native microbial hosts.


Assuntos
Biotecnologia/métodos , Policetídeo Sintases/metabolismo , Engenharia de Proteínas/métodos , Pironas/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Asteraceae/enzimologia , Policetídeo Sintases/química , Policetídeo Sintases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética
7.
Nature ; 485(7399): 530-3, 2012 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-22622584

RESUMO

Specialized metabolic enzymes biosynthesize chemicals of ecological importance, often sharing a pedigree with primary metabolic enzymes. However, the lineage of the enzyme chalcone isomerase (CHI) remained unknown. In vascular plants, CHI-catalysed conversion of chalcones to chiral (S)-flavanones is a committed step in the production of plant flavonoids, compounds that contribute to attraction, defence and development. CHI operates near the diffusion limit with stereospecific control. Although associated primarily with plants, the CHI fold occurs in several other eukaryotic lineages and in some bacteria. Here we report crystal structures, ligand-binding properties and in vivo functional characterization of a non-catalytic CHI-fold family from plants. Arabidopsis thaliana contains five actively transcribed genes encoding CHI-fold proteins, three of which additionally encode amino-terminal chloroplast-transit sequences. These three CHI-fold proteins localize to plastids, the site of de novo fatty-acid biosynthesis in plant cells. Furthermore, their expression profiles correlate with those of core fatty-acid biosynthetic enzymes, with maximal expression occurring in seeds and coinciding with increased fatty-acid storage in the developing embryo. In vitro, these proteins are fatty-acid-binding proteins (FAPs). FAP knockout A. thaliana plants show elevated α-linolenic acid levels and marked reproductive defects, including aberrant seed formation. Notably, the FAP discovery defines the adaptive evolution of a stereospecific and catalytically 'perfected' enzyme from a non-enzymatic ancestor over a defined period of plant evolution.


Assuntos
Arabidopsis/química , Biocatálise , Evolução Molecular , Ácidos Graxos/metabolismo , Liases Intramoleculares/química , Liases Intramoleculares/metabolismo , Dobramento de Proteína , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/deficiência , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Liases Intramoleculares/deficiência , Liases Intramoleculares/genética , Ligantes , Modelos Moleculares , Fenótipo , Ligação Proteica , Estereoisomerismo , Ácido alfa-Linolênico/metabolismo
8.
Plant Cell ; 26(9): 3709-27, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25217505

RESUMO

The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates.


Assuntos
Oxirredutases do Álcool/química , Aldeído Oxirredutases/química , Lignina/biossíntese , Medicago truncatula/enzimologia , Petunia/enzimologia , Propanóis/metabolismo , Oxirredutases do Álcool/metabolismo , Aldeído Oxirredutases/metabolismo , Sítios de Ligação , Biocatálise , Clonagem Molecular , Cristalografia por Raios X , Cisteína/metabolismo , Dissulfetos/metabolismo , Ésteres/metabolismo , Cinética , Ligantes , Lignina/química , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , NADP/metabolismo , Propanóis/química , Homologia Estrutural de Proteína , Especificidade por Substrato , Temperatura
9.
Nat Commun ; 15(1): 389, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195598

RESUMO

Structural biology efforts using cryogenic electron microscopy are frequently stifled by specimens adopting "preferred orientations" on grids, leading to anisotropic map resolution and impeding structure determination. Tilting the specimen stage during data collection is a generalizable solution but has historically led to substantial resolution attenuation. Here, we develop updated data collection and image processing workflows and demonstrate, using multiple specimens, that resolution attenuation is negligible or significantly reduced across tilt angles. Reconstructions with and without the stage tilted as high as 60° are virtually indistinguishable. These strategies allowed the reconstruction to 3 Å resolution of a bacterial RNA polymerase with preferred orientation, containing an unnatural nucleotide for studying novel base pair recognition. Furthermore, we present a quantitative framework that allows cryo-EM practitioners to define an optimal tilt angle during data acquisition. These results reinforce the utility of employing stage tilt for data collection and provide quantitative metrics to obtain isotropic maps.


Assuntos
Benchmarking , Sistemas Computacionais , Microscopia Crioeletrônica , Anisotropia , Coleta de Dados
10.
Plant Cell ; 22(12): 4114-27, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21177481

RESUMO

Lignin forms from the polymerization of phenylpropanoid-derived building blocks (the monolignols), whose modification through hydroxylation and O-methylation modulates the chemical and physical properties of the lignin polymer. The enzyme caffeic acid O-methyltransferase (COMT) is central to lignin biosynthesis. It is often targeted in attempts to engineer the lignin composition of transgenic plants for improved forage digestibility, pulping efficiency, or utility in biofuel production. Despite intensive investigation, the structural determinants of the regiospecificity and substrate selectivity of COMT remain poorly defined. Reported here are x-ray crystallographic structures of perennial ryegrass (Lolium perenne) COMT (Lp OMT1) in open conformational state, apo- and holoenzyme forms and, most significantly, in a closed conformational state complexed with the products S-adenosyl-L-homocysteine and sinapaldehyde. The product-bound complex reveals the post-methyl-transfer organization of COMT's catalytic groups with reactant molecules and the fully formed phenolic-ligand binding site. The core scaffold of the phenolic ligand forges a hydrogen-bonding network involving the 4-hydroxy group that anchors the aromatic ring and thereby permits only metahydroxyl groups to be positioned for transmethylation. While distal from the site of transmethylation, the propanoid tail substituent governs the kinetic preference of ryegrass COMT for aldehydes over alcohols and acids due to a single hydrogen bond donor for the C9 oxygenated moiety dictating the preference for an aldehyde.


Assuntos
Lolium/enzimologia , Metiltransferases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ligação de Hidrogênio , Cinética , Metiltransferases/química , Modelos Moleculares , Relação Estrutura-Atividade , Especificidade por Substrato
11.
Plant Cell ; 22(10): 3357-73, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20952635

RESUMO

Cinnamoyl CoA-reductase (CCR) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the biosynthesis of monolignols, which serve as building blocks in the formation of plant lignin. We identified candidate genes encoding these two enzymes in perennial ryegrass (Lolium perenne) and show that the spatio-temporal expression patterns of these genes in planta correlate well with the developmental profile of lignin deposition. Downregulation of CCR1 and caffeic acid O-methyltransferase 1 (OMT1) using an RNA interference-mediated silencing strategy caused dramatic changes in lignin level and composition in transgenic perennial ryegrass plants grown under both glasshouse and field conditions. In CCR1-deficient perennial ryegrass plants, metabolic profiling indicates the redirection of intermediates both within and beyond the core phenylpropanoid pathway. The combined results strongly support a key role for the OMT1 gene product in the biosynthesis of both syringyl- and guaiacyl-lignin subunits in perennial ryegrass. Both field-grown OMT1-deficient and CCR1-deficient perennial ryegrass plants showed enhanced digestibility without obvious detrimental effects on either plant fitness or biomass production. This highlights the potential of metabolic engineering not only to enhance the forage quality of grasses but also to produce optimal feedstock plants for biofuel production.


Assuntos
Aldeído Oxirredutases/metabolismo , Lignina/biossíntese , Lolium/enzimologia , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Aldeído Oxirredutases/genética , Regulação da Expressão Gênica de Plantas , Lolium/genética , Metiltransferases/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Interferência de RNA , RNA de Plantas/genética
12.
bioRxiv ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503021

RESUMO

Structural biology efforts using cryogenic electron microscopy are frequently stifled by specimens adopting "preferred orientations" on grids, leading to anisotropic map resolution and impeding structure determination. Tilting the specimen stage during data collection is a generalizable solution but has historically led to substantial resolution attenuation. Here, we develop updated data collection and image processing workflows and demonstrate, using multiple specimens, that resolution attenuation is negligible or significantly reduced across tilt angles. Reconstructions with and without the stage tilted as high as 60° are virtually indistinguishable. These strategies allowed the reconstruction to 3 Å resolution of a bacterial RNA polymerase with preferred orientation. Furthermore, we present a quantitative framework that allows cryo-EM practitioners to define an optimal tilt angle for dataset acquisition. These data reinforce the utility of employing stage tilt for data collection and provide quantitative metrics to obtain isotropic maps.

13.
J Vis Exp ; (185)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35848829

RESUMO

Single-particle analysis (SPA) by cryo-electron microscopy (cryo-EM) is now a mainstream technique for high-resolution structural biology. Structure determination by SPA relies upon obtaining multiple distinct views of a macromolecular object vitrified within a thin layer of ice. Ideally, a collection of uniformly distributed random projection orientations would amount to all possible views of the object, giving rise to reconstructions characterized by isotropic directional resolution. However, in reality, many samples suffer from preferentially oriented particles adhering to the air-water interface. This leads to non-uniform angular orientation distributions in the dataset and inhomogeneous Fourier-space sampling in the reconstruction, translating into maps characterized by anisotropic resolution. Tilting the specimen stage provides a generalizable solution to overcoming resolution anisotropy by virtue of improving the uniformity of orientation distributions, and thus the isotropy of Fourier space sampling. The present protocol describes a tilted-stage automated data collection strategy using Leginon, a software for automated image acquisition. The procedure is simple to implement, does not require any additional equipment or software, and is compatible with most standard transmission electron microscopes (TEMs) used for imaging biological macromolecules.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Anisotropia , Microscopia Crioeletrônica/métodos , Coleta de Dados , Substâncias Macromoleculares/química
14.
Plant J ; 54(3): 362-74, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18208524

RESUMO

Many plants synthesize the volatile phenylpropene compounds eugenol and isoeugenol to serve in defense against herbivores and pathogens and to attract pollinators. Clarkia breweri flowers emit a mixture of eugenol and isoeugenol, while Petunia hybrida flowers emit mostly isoeugenol with small amounts of eugenol. We recently reported the identification of a petunia enzyme, isoeugenol synthase 1 (PhIGS1) that catalyzes the formation of isoeugenol, and an Ocimum basilicum (basil) enzyme, eugenol synthase 1 (ObEGS1), that produces eugenol. ObEGS1 and PhIGS1 both utilize coniferyl acetate, are 52% sequence identical, and belong to a family of NADPH-dependent reductases involved in secondary metabolism. Here we show that C. breweri flowers have two closely related proteins (96% identity), CbIGS1 and CbEGS1, that are similar to ObEGS1 (58% and 59% identity, respectively) and catalyze the formation of isoeugenol and eugenol, respectively. In vitro mutagenesis experiments demonstrate that substitution of only a single residue can substantially affect the product specificity of these enzymes. A third C. breweri enzyme identified, CbEGS2, also catalyzes the formation of eugenol from coniferyl acetate and is only 46% identical to CbIGS1 and CbEGS1 but more similar (>70%) to other types of reductases. We also found that petunia flowers contain an enzyme, PhEGS1, that is highly similar to CbEGS2 (82% identity) and that converts coniferyl acetate to eugenol. Our results indicate that plant enzymes with EGS and IGS activities have arisen multiple times and in different protein lineages.


Assuntos
Clarkia/enzimologia , Enzimas/metabolismo , Petunia/enzimologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Clarkia/genética , Clarkia/metabolismo , Eletroforese em Gel de Poliacrilamida , Enzimas/genética , Eugenol/análogos & derivados , Eugenol/química , Eugenol/metabolismo , Flores/enzimologia , Flores/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Petunia/genética , Petunia/metabolismo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos
15.
Chem Biol ; 13(12): 1327-38, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17185228

RESUMO

Aromatic amino acid ammonia-lyases catalyze the deamination of L-His, L-Phe, and L-Tyr, yielding ammonia plus aryl acids bearing an alpha,beta-unsaturated propenoic acid. We report crystallographic analyses of unliganded Rhodobacter sphaeroides tyrosine ammonia-lyase (RsTAL) and RsTAL bound to p-coumarate and caffeate. His 89 of RsTAL forms a hydrogen bond with the p-hydroxyl moieties of coumarate and caffeate. His 89 is conserved in TALs but replaced in phenylalanine ammonia-lyases (PALs) and histidine ammonia-lyases (HALs). Substitution of His 89 by Phe, a characteristic residue of PALs, yields a mutant with a switch in kinetic preference from L-Tyr to L-Phe. Structures of the H89F mutant in complex with the PAL product, cinnamate, or the PAL-specific inhibitor, 2-aminoindan-2-phosphonate (AIP), support the role of position 89 as a specificity determinant in the family of aromatic amino acid ammonia-lyases and aminomutases responsible for beta-amino acid biosynthesis.


Assuntos
Amônia-Liases , Fenilalanina , Sequência de Aminoácidos , Amônia-Liases/química , Amônia-Liases/metabolismo , Sítios de Ligação , Ácidos Cafeicos/química , Ácidos Cumáricos/química , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Fenilalanina/química , Fenilalanina/metabolismo , Rhodobacter sphaeroides/enzimologia , Alinhamento de Sequência , Especificidade por Substrato
16.
Chem Biol ; 11(9): 1179-94, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15380179

RESUMO

Stilbene synthase (STS) and chalcone synthase (CHS) each catalyze the formation of a tetraketide intermediate from a CoA-tethered phenylpropanoid starter and three molecules of malonyl-CoA, but use different cyclization mechanisms to produce distinct chemical scaffolds for a variety of plant natural products. Here we present the first STS crystal structure and identify, by mutagenic conversion of alfalfa CHS into a functional stilbene synthase, the structural basis for the evolution of STS cyclization specificity in type III polyketide synthase (PKS) enzymes. Additional mutagenesis and enzymatic characterization confirms that electronic effects rather than steric factors balance competing cyclization specificities in CHS and STS. Finally, we discuss the problematic in vitro reconstitution of plant stilbenecarboxylate pathways, using insights from existing biomimetic polyketide cyclization studies to generate a novel mechanistic hypothesis to explain stilbenecarboxylate biosynthesis.


Assuntos
Aciltransferases/metabolismo , Aciltransferases/química , Aciltransferases/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Ciclização , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Resveratrol , Estilbenos/metabolismo , Especificidade por Substrato
17.
ACS Chem Biol ; 7(8): 1462-70, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22670809

RESUMO

The C-terminal domain (CTD) of eukaryotic RNA polymerase II is an essential regulator for RNA polymerase II-mediated transcription. It is composed of multiple repeats of a consensus sequence Tyr(1)Ser(2)Pro(3)Thr(4)Ser(5)Pro(6)Ser(7). CTD regulation of transcription is mediated by both phosphorylation of the serines and prolyl isomerization of the two prolines. Interestingly, the phosphorylation sites are typically close to prolines, and thus the conformation of the adjacent proline could impact the specificity of the corresponding kinases and phosphatases. Experimental evidence of cross-talk between these two regulatory mechanisms has been elusive. Pin1 is a highly conserved phosphorylation-specific peptidyl-prolyl isomerase (PPIase) that recognizes the phospho-Ser/Thr (pSer/Thr)-Pro motif with CTD as one of its primary substrates in vivo. In the present study, we provide structural snapshots and kinetic evidence that support the concept of cross-talk between prolyl isomerization and phosphorylation. We determined the structures of Pin1 bound with two substrate isosteres that mimic peptides containing pSer/Thr-Pro motifs in cis or trans conformations. The results unequivocally demonstrate the utility of both cis- and trans-locked alkene isosteres as close geometric mimics of peptides bound to a protein target. Building on this result, we identified a specific case in which Pin1 differentially affects the rate of dephosphorylation catalyzed by two phosphatases (Scp1 and Ssu72) that target the same serine residue in the CTD heptad repeat but have different preferences for the isomerization state of the adjacent proline residue. These data exemplify for the first time how modulation of proline isomerization can kinetically impact signal transduction in transcription regulation.


Assuntos
Peptidilprolil Isomerase/química , RNA Polimerase II/química , Animais , Humanos , Cinética , Modelos Químicos , Conformação Molecular , Peptidilprolil Isomerase de Interação com NIMA , Monoéster Fosfórico Hidrolases/química , Fosforilação , Fosfotransferases/química , Prolina/química , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Transcrição Gênica
18.
Biochemistry ; 46(4): 1004-12, 2007 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17240984

RESUMO

Phenylalanine ammonia lyase (PAL) catalyzes the deamination of phenylalanine to cinnamate and ammonia. While PALs are common in terrestrial plants where they catalyze the first committed step in the formation of phenylpropanoids, only a few prokaryotic PALs have been identified to date. Here we describe for the first time PALs from cyanobacteria, in particular, Anabaena variabilis ATCC 29413 and Nostoc punctiforme ATCC 29133, identified by screening the genome sequences of these organisms for members of the aromatic amino acid ammonia lyase family. Both PAL genes associate with secondary metabolite biosynthetic gene clusters as observed for other eubacterial PAL genes. In comparison to eukaryotic homologues, the cyanobacterial PALs are 20% smaller in size but share similar substrate selectivity and kinetic activity toward L-phenylalanine over L-tyrosine. Structure elucidation by protein X-ray crystallography confirmed that the two cyanobacterial PALs are similar in tertiary and quatenary structure to plant and yeast PALs as well as the mechanistically related histidine ammonia lyases.


Assuntos
Anabaena variabilis/enzimologia , Nostoc/enzimologia , Fenilalanina Amônia-Liase/química , Fenilalanina Amônia-Liase/metabolismo , Anabaena variabilis/genética , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , DNA Bacteriano/genética , Genes Bacterianos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Nostoc/genética , Fenilalanina Amônia-Liase/genética , Conformação Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática
19.
PLoS One ; 2(10): e993, 2007 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17912370

RESUMO

Phenylpropenes, a large group of plant volatile compounds that serve in multiple roles in defense and pollinator attraction, contain a propenyl side chain. Eugenol synthase (EGS) catalyzes the reductive displacement of acetate from the propenyl side chain of the substrate coniferyl acetate to produce the allyl-phenylpropene eugenol. We report here the structure determination of EGS from basil (Ocimum basilicum) by protein x-ray crystallography. EGS is structurally related to the short-chain dehydrogenase/reductases (SDRs), and in particular, enzymes in the isoflavone-reductase-like subfamily. The structure of a ternary complex of EGS bound to the cofactor NADP(H) and a mixed competitive inhibitor EMDF ((7S,8S)-ethyl (7,8-methylene)-dihydroferulate) provides a detailed view of the binding interactions within the EGS active site and a starting point for mutagenic examination of the unusual reductive mechanism of EGS. The key interactions between EMDF and the EGS-holoenzyme include stacking of the phenyl ring of EMDF against the cofactor's nicotinamide ring and a water-mediated hydrogen-bonding interaction between the EMDF 4-hydroxy group and the side-chain amino moiety of a conserved lysine residue, Lys132. The C4 carbon of nicotinamide resides immediately adjacent to the site of hydride addition, the C7 carbon of cinnamyl acetate substrates. The inhibitor-bound EGS structure suggests a two-step reaction mechanism involving the formation of a quinone-methide prior to reduction. The formation of this intermediate is promoted by a hydrogen-bonding network that favors deprotonation of the substrate's 4-hydroxyl group and disfavors binding of the acetate moiety, akin to a push-pull catalytic mechanism. Notably, the catalytic involvement in EGS of the conserved Lys132 in preparing the phenolic substrate for quinone methide formation through the proton-relay network appears to be an adaptation of the analogous role in hydrogen bonding played by the equivalent lysine residue in other enzymes of the SDR family.


Assuntos
Eugenol/metabolismo , Ocimum basilicum/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Benzoquinonas/química , Sítios de Ligação , Ligação Competitiva , Catálise , Cristalografia por Raios X/métodos , Ligação de Hidrogênio , Isoflavonas/química , Lisina/química , Modelos Químicos , Conformação Molecular , NADP/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , UDPglucose 4-Epimerase/química
20.
ACS Chem Biol ; 2(5): 320-8, 2007 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17518432

RESUMO

Human Pin1 is a key regulator of cell-cycle progression and plays growth-promoting roles in human cancers. High-affinity inhibitors of Pin1 may provide a unique opportunity for disrupting oncogenic pathways. Here we report two high-resolution X-ray crystal structures of human Pin1 bound to non-natural peptide inhibitors. The structures of the bound high-affinity peptides identify a type-I beta-turn conformation for Pin1 prolyl peptide isomerase domain-peptide binding and an extensive molecular interface for high-affinity recognition. Moreover, these structures suggest chemical elements that may further improve the affinity and pharmacological properties of future peptide-based Pin inhibitors. Finally, an intramolecular hydrogen bond observed in both peptide complexes mimics the cyclic conformation of FK506 and rapamycin. Both FK506 and rapamycin are clinically important inhibitors of other peptidyl-prolyl cis-trans isomerases. This comparative discovery suggests that a cyclic peptide polyketide bridge, like that found in FK506 and rapamycin or a similar linkage, may significantly improve the binding affinity of structure-based Pin1 inhibitors.


Assuntos
Inibidores Enzimáticos , Oligopeptídeos , Peptidilprolil Isomerase/antagonistas & inibidores , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Isomerismo , Ligantes , Modelos Moleculares , Peptidilprolil Isomerase de Interação com NIMA , Oligopeptídeos/síntese química , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Biblioteca de Peptídeos , Peptidilprolil Isomerase/química , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA