Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 111(22): 228103, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24329473

RESUMO

Synchronization of driven oscillators is a key aspect of flow generation in artificial and biological filaments such as cilia. Previous theoretical and numerical studies have considered the "rotor" model of a cilium in which the filament is coarse grained into a colloidal sphere driven with a given force law along a predefined trajectory to represent the oscillating motion of the cilium. These studies pointed to the importance of two factors in the emergence of synchronization: the modulation of the driving force around the orbit and the deformability of the trajectory. In this work it is shown via experiments, supported by numerical simulations and theory, that both of these factors are important and can be combined to produce strong synchronization (within a few cycles) even in the presence of thermal noise.

2.
ACS Nano ; 13(4): 3858-3866, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30794379

RESUMO

Block copolymer self-assembly has enabled the creation of a range of solution-phase nanostructures with applications from optoelectronics and biomedicine to catalysis. However, to incorporate such materials into devices a method that facilitates their precise manipulation and deposition is desirable. Herein we describe how optical tweezers can be used to trap, manipulate, and pattern individual cylindrical micelles and larger hybrid micellar materials. Through the combination of TIRF imaging and optical trapping we can precisely control the three-dimensional motion of individual cylindrical block copolymer micelles in solution, enabling the creation of customizable arrays. We also demonstrate that dynamic holographic assembly enables the creation of ordered customizable arrays of complex hybrid block copolymer structures. By creating a program which automatically identifies, traps, and then deposits multiple assemblies simultaneously we have been able to dramatically speed up this normally slow process, enabling the fabrication of arrays of hybrid structures containing hundreds of assemblies in minutes rather than hours.

3.
Sci Rep ; 7(1): 9315, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839174

RESUMO

Synthetic tissues can be generated by forming networks of aqueous droplets in lipid-containing oil. Each droplet contains a cell-free expression system and is connected to its neighbor through a lipid bilayer. In the present work, we have demonstrated precise external control of such networks by activating protein expression within single droplets, by using light-activated DNA to encode either a fluorescent or a pore-forming protein. By controlling the extent of activation, synthetic tissues were generated with graded levels of protein expression in patterns of single droplets. Further, we have demonstrated reversible activation within individual compartments in synthetic tissues by turning a fluorescent protein on-and-off. This is the first example of the high-resolution patterning of droplet networks, following their formation. Single-droplet control will be essential to power subsets of compartments within synthetic tissues or to stimulate subsets of cells when synthetic tissues are interfaced with living tissues.

4.
Sci Rep ; 7: 46585, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28417964

RESUMO

We have created a 4 × 4 droplet bilayer array comprising light-activatable aqueous droplet bio-pixels. Aqueous droplets containing bacteriorhodopsin (bR), a light-driven proton pump, were arranged on a common hydrogel surface in lipid-containing oil. A separate lipid bilayer formed at the interface between each droplet and the hydrogel; each bilayer then incorporated bR. Electrodes in each droplet simultaneously measured the light-driven proton-pumping activities of each bio-pixel. The 4 × 4 array derived by this bottom-up synthetic biology approach can detect grey-scale images and patterns of light moving across the device, which are transduced as electrical current generated in each bio-pixel. We propose that synthetic biological light-activatable arrays, produced with soft materials, might be interfaced with living tissues to stimulate neuronal pathways.

5.
Sci Rep ; 7(1): 7004, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765636

RESUMO

Bioprinting is an emerging technique for the fabrication of living tissues that allows cells to be arranged in predetermined three-dimensional (3D) architectures. However, to date, there are limited examples of bioprinted constructs containing multiple cell types patterned at high-resolution. Here we present a low-cost process that employs 3D printing of aqueous droplets containing mammalian cells to produce robust, patterned constructs in oil, which were reproducibly transferred to culture medium. Human embryonic kidney (HEK) cells and ovine mesenchymal stem cells (oMSCs) were printed at tissue-relevant densities (107 cells mL-1) and a high droplet resolution of 1 nL. High-resolution 3D geometries were printed with features of ≤200 µm; these included an arborised cell junction, a diagonal-plane junction and an osteochondral interface. The printed cells showed high viability (90% on average) and HEK cells within the printed structures were shown to proliferate under culture conditions. Significantly, a five-week tissue engineering study demonstrated that printed oMSCs could be differentiated down the chondrogenic lineage to generate cartilage-like structures containing type II collagen.


Assuntos
Bioimpressão/métodos , Células Epiteliais/fisiologia , Células-Tronco Mesenquimais/fisiologia , Técnicas de Cultura de Órgãos/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Animais , Proliferação de Células , Células Cultivadas , Cabras , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA