RESUMO
Hyperglycemia-induced protein glycation and formation of advanced glycation end-products (AGEs) plays an important role in the pathogenesis of diabetic complications and pathological biomineralization. Receptors for AGEs (RAGEs) mediate the generation of reactive oxygen species (ROS) via activation of NADPH-oxidase. It is conceivable that binding of glycated proteins with biomineral particles composed mainly of calcium carbonate and/or phosphate enhances their neutrophil-activating capacity and hence their proinflammatory properties. Our research managed to confirm this hypothesis. Human serum albumin (HSA) was glycated with methylglyoxal (MG), and HSA-MG was adsorbed onto mineral microparticles composed of calcium carbonate nanocrystals (vaterite polymorph, CC) or hydroxyapatite nanowires (CP). As scopoletin fluorescence has shown, H2O2 generation by neutrophils stimulated with HSA-MG was inhibited with diphenyleneiodonium chloride, wortmannin, genistein and EDTA, indicating a key role for NADPH-oxidase, protein tyrosine kinase, phosphatidylinositol 3-kinase and divalent ions (presumably Ca2+) in HSA-MG-induced neutrophil respiratory burst. Superoxide anion generation assessed by lucigenin-enhanced chemiluminescence (Luc-CL) was significantly enhanced by free HSA-MG and by both CC-HSA-MG and CP-HSA-MG microparticles. Comparing the concentrations of CC-bound and free HSA-MG, one could see that adsorption enhanced the neutrophil-activating capacity of HSA-MG.
Assuntos
Ativação de Neutrófilo , Aldeído Pirúvico , Carbonato de Cálcio , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Peróxido de Hidrogênio , Minerais , NADP , NADPH Oxidases/metabolismo , Aldeído Pirúvico/farmacologia , Albumina Sérica , Albumina Sérica Humana/química , Albumina Sérica GlicadaRESUMO
Aim: To develop an optimized approach for encapsulating a 2-alkylthioimidazolone-based copper coordination compound within liposomes, which could offer treatment of cancer and bacterial infections by reactive oxygen species generation toxicity mechanisms. Materials & methods: For drug-loaded liposome preparation, lipids and drug mixture in organic solvents was injected into copper salt solution, forming a coordination compound simultaneously embedded in the lipid bilayer. In vitro tests were performed on MCF7 and MDA-MB-231 breast cancer cells. Results: Liposomes had a loading capacity of up to 1.75% (molar drug-to-lipid ratio). In vitro tests showed increased viability and accumulation of the liposomal formulation compared with free drug as well as lack of cytotoxicity in hepatocytes. Conclusion: This optimized technique for encapsulating large copper complexes in liposomes could be used to improve their delivery and better treat cancer and bacterial infections.
This work introduces a new technique for copper-containing drugs encapsulation in a drug-delivery system. The drug, a promising copper compound, is embedded in lipid nanovesicles tiny fat particles for intravenous injection. In addition to chemical characterization of the obtained drug form, tests on cancer cells showed a noticeable effect, whereas healthy cell types were not harmed. Copper possesses not only anticancer effects but also antimicrobial properties, which are also shown by the drug form, and a test of combined suppression of cancer cell lines and bacteria was successful. Hence, the obtained drug form has the potential for dual treatment of cancer and bacterial infections.