Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PRiMER ; 8: 37, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946750

RESUMO

Introduction: US child firearm fatality rates have risen since 2013. Child Access Prevention (CAP) laws aimed at reducing minors' access to firearms have existed since the 1980s. However, specific requirements for safe storage of firearms, standards of negligence, and penalties for offenders vary significantly by state, yielding a heterogeneous body of CAP legislation. A few studies have investigated the relative impacts of these laws on child firearm injury rates, with sometimes conflicting results. Here, we present a rapid review of the existing literature on CAP laws and their apparent impact on firearm-related injuries among US children, to assess whether CAP laws are an effective tool for reducing child firearm injuries. Methods: We conducted a rapid review of published reports that evaluated the impact of CAP laws on pediatric firearm injuries and/or deaths in the United States. We extracted target population data and outcomes of each study. The data are presented narratively. Results: A total of 14 articles met criteria for evaluation. Taken together, these studies showed that implementation of CAP legislation was associated with reduced pediatric firearm injuries and fatalities. Moreover, longitudinal or time-series studies that examined changes in pediatric firearm injuries pre/post-CAP legislation yielded the most consistent and robust findings. Conclusion: CAP laws were found to be associated with reduced pediatric firearm injuries and deaths, with the magnitude of effect being proportional to CAP law stringency.

2.
Sci Immunol ; 9(92): eabq4341, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306414

RESUMO

The olfactory neuroepithelium serves as a sensory organ for odors and forms part of the nasal mucosal barrier. Olfactory sensory neurons are surrounded and supported by epithelial cells. Among them, microvillous cells (MVCs) are strategically positioned at the apical surface, but their specific functions are enigmatic, and their relationship to the other specialized epithelial cells is unclear. Here, we establish that the family of MVCs comprises tuft cells and ionocytes in both mice and humans. Integrating analysis of the respiratory and olfactory epithelia, we define the distinct receptor expression of TRPM5+ tuft-MVCs compared with Gɑ-gustducinhigh respiratory tuft cells and characterize a previously undescribed population of glandular DCLK1+ tuft cells. To establish how allergen sensing by tuft-MVCs might direct olfactory mucosal responses, we used an integrated single-cell transcriptional and protein analysis. Inhalation of Alternaria induced mucosal epithelial effector molecules including Chil4 and a distinct pathway leading to proliferation of the quiescent olfactory horizontal basal stem cell (HBC) pool, both triggered in the absence of olfactory apoptosis. Alternaria- and ATP-elicited HBC proliferation was dependent on TRPM5+ tuft-MVCs, identifying these specialized epithelial cells as regulators of olfactory stem cell responses. Together, our data provide high-resolution characterization of nasal tuft cell heterogeneity and identify a function of TRPM5+ tuft-MVCs in directing the olfactory mucosal response to allergens.


Assuntos
Mucosa Olfatória , Células em Tufo , Humanos , Camundongos , Animais , Mucosa Olfatória/metabolismo , Mucosa Nasal , Células Epiteliais/metabolismo , Proliferação de Células , Quinases Semelhantes a Duplacortina
3.
Bio Protoc ; 11(18): e4163, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34692913

RESUMO

Solitary chemosensory epithelial cells are scattered in most mucosal surfaces. They are referred to as tuft cells in the intestinal mucosa, brush cells in the trachea, and solitary chemosensory and microvillous cells in the nasal mucosa. They are the primary source of IL-25 in the epithelium and are also engaged in acetylcholine generation. We recently demonstrated that nasal solitary chemosensory (brush) cells can generate robust levels of cysteinyl leukotrienes in response to stimulation with calcium ionophore, aeroallergens, and danger-associated molecules, such as ATP and UTP, and this mechanism depends on brush cell expression of the purinergic receptor P2Y2. This protocol describes an effective method of nasal brush cell isolation in the mouse. The method is based on physical separation of the mucosal layer of the nasal cavity and pre-incubation with dispase, followed by digestion with papain solution. The single cell suspension obtained this way contains a high yield of brush cells for fluorescence-activated cell sorting (FACS), RNA-sequencing, and ex vivo assays. Graphic abstract: Workflow of nasal digestion for brush cell isolation.

4.
Sci Immunol ; 6(66): eabj0474, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34932383

RESUMO

Aeroallergen sensing by airway epithelial cells triggers pathogenic immune responses leading to type 2 inflammation, the hallmark of chronic airway diseases such as asthma. Tuft cells are rare epithelial cells and the dominant source of interleukin-25 (IL-25), an epithelial cytokine, and cysteinyl leukotrienes (CysLTs), lipid mediators of vascular permeability and chemotaxis. How these two mediators derived from the same cell might cooperatively promote type 2 inflammation in the airways has not been clarified. Here, we showed that inhalation of the parent leukotriene C4 (LTC4) in combination with a subthreshold dose of IL-25 led to activation of two innate immune cells: inflammatory type 2 innate lymphoid cell (ILC2) for proliferation and cytokine production, and dendritic cells (DCs). This cooperative effect led to a much greater recruitment of eosinophils and CD4+ T cell expansion indicative of synergy. Whereas lung eosinophilia was dominantly mediated through the classical CysLT receptor CysLT1R, type 2 cytokines and activation of innate immune cells required signaling through CysLT1R and partially CysLT2R. Tuft cell­specific deletion of Ltc4s, the terminal enzyme required for CysLT production, reduced lung inflammation and the systemic immune response after inhalation of the mold aeroallergen Alternaria; this effect was further enhanced by concomitant blockade of IL-25. Our findings identified a potent synergy of CysLTs and IL-25 downstream of aeroallergen-trigged activation of airway tuft cells leading to a highly polarized type 2 immune response and further implicate airway tuft cells as powerful modulators of type 2 immunity in the lungs.


Assuntos
Cisteína/imunologia , Células Epiteliais/imunologia , Interleucinas/imunologia , Leucotrienos/imunologia , Pneumonia/imunologia , Animais , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA