Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Virol ; 98(3): e0192123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38319104

RESUMO

Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture-adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants that underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establish persistence. IMPORTANCE: Hepatitis C virus (HCV) infection remains a global health burden with 58 million people currently chronically infected. However, the detailed molecular mechanisms that underly persistence are incompletely defined. We utilized a long-term cell culture-adapted HCV, exhibiting enhanced replicative fitness in different human liver cell lines, in order to identify molecular principles by which HCV optimizes its replication fitness. Our experimental data revealed that cell culture adaptive mutations confer changes in the host response and usage of various host factors. The latter allows functional flexibility at different stages of the viral replication cycle. However, increased replicative fitness resulted in an increased activation of the innate immune system, which likely poses boundary for functional variation in authentic hepatocytes, explaining the observed attenuation of the adapted virus population in primary hepatocytes.


Assuntos
Aptidão Genética , Hepacivirus , Hepatócitos , Interações entre Hospedeiro e Microrganismos , Imunidade Inata , Mutação , Humanos , Células Cultivadas , Estresse do Retículo Endoplasmático , Aptidão Genética/genética , Aptidão Genética/imunologia , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/imunologia , Hepacivirus/fisiologia , Hepatite C/imunologia , Hepatite C/virologia , Hepatócitos/imunologia , Hepatócitos/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , MicroRNAs/metabolismo , Inoculações Seriadas , Resposta a Proteínas não Dobradas , Tropismo Viral , Vírion/crescimento & desenvolvimento , Vírion/metabolismo , Replicação Viral/genética , Replicação Viral/imunologia
2.
Hepatology ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728662

RESUMO

BACKGROUND AND AIMS: HEV is estimated to be responsible for 70,000 deaths annually, yet therapy options remain limited. In the pursuit of effective antiviral therapies, targeting viral entry holds promise and has proven effective for other viruses. However, the precise mechanisms and host factors required during HEV entry remain unclear. Cellular proteases have emerged as host factors required for viral surface protein activation and productive cell entry by many viruses. Hence, we investigated the functional requirement and therapeutic potential of cellular protease during HEV infection. APPROACH AND RESULTS: Using our established HEV cell culture model and subgenomic HEV replicons, we found that blocking lysosomal cathepsins (CTS) with small molecule inhibitors impedes HEV infection without affecting replication. Most importantly, the pan-cathepsin inhibitor K11777 suppressed HEV infections with an EC 50 of ~0.02 nM. Inhibition by K11777, devoid of notable toxicity in hepatoma cells, was also observed in HepaRG and primary human hepatocytes. Furthermore, through time-of-addition and RNAscope experiments, we confirmed that HEV entry is blocked by inhibition of cathepsins. Cathepsin L (CTSL) knockout cells were less permissive to HEV, suggesting that CTSL is critical for HEV infection. Finally, we observed cleavage of the glycosylated ORF2 protein and virus particles by recombinant CTSL. CONCLUSIONS: In summary, our study highlights the pivotal role of lysosomal cathepsins, especially CTSL, in the HEV entry process. The profound anti-HEV efficacy of the pan-cathepsin inhibitor K11777, especially with its notable safety profile in primary cells, further underscores its potential as a therapeutic candidate.

3.
Proc Natl Acad Sci U S A ; 119(34): e2202653119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969792

RESUMO

Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and is the leading cause of enterically transmitted viral hepatitis worldwide. Ribavirin (RBV) is currently the only treatment option for many patients; however, cases of treatment failures or posttreatment relapses have been frequently reported. RBV therapy was shown to be associated with an increase in HEV genome heterogeneity and the emergence of distinct HEV variants. In this study, we analyzed the impact of eight patient-derived open reading frame 2 (ORF2) single-nucleotide variants (SNVs), which occurred under RBV treatment, on the replication cycle and pathogenesis of HEV. The parental HEV strain and seven ORF2 variants showed comparable levels of RNA replication in human hepatoma cells and primary human hepatocytes. However, a P79S ORF2 variant demonstrated reduced RNA copy numbers released in the supernatant and an impairment in the production of infectious particles. Biophysical and biochemical characterization revealed that this SNV caused defective, smaller HEV particles with a loss of infectiousness. Furthermore, the P79S variant displayed an altered subcellular distribution of the ORF2 protein and was able to interfere with antibody-mediated neutralization of HEV in a competition assay. In conclusion, an SNV in the HEV ORF2 could be identified that resulted in altered virus particles that were noninfectious in vitro and in vivo, but could potentially serve as immune decoys. These findings provide insights in understanding the biology of circulating HEV variants and may guide development of personalized antiviral strategies in the future.


Assuntos
Vírus da Hepatite E , Ribavirina , Proteínas Virais , Linhagem Celular Tumoral , Vírus da Hepatite E/genética , Vírus da Hepatite E/fisiologia , Hepatócitos/virologia , Humanos , Recidiva Local de Neoplasia/genética , Nucleotídeos , RNA Viral , Ribavirina/farmacologia , Proteínas Virais/genética , Replicação Viral
4.
Hepatology ; 77(6): 2104-2117, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745934

RESUMO

BACKGROUND AND AIMS: Being the most common cause of acute viral hepatitis with >20 million cases per year and 70,000 deaths annually, HEV presents a long-neglected and underinvestigated health burden. Although the entry process of viral particles is an attractive target for pharmacological intervention, druggable host factors to restrict HEV entry have not been identified so far. APPROACH AND RESULTS: Here we identify the EGF receptor (EGFR) as a novel host factor for HEV and reveal the significance of EGFR for the HEV entry process. By utilizing RNAi, chemical modulation with Food and Drug Administration-approved drugs, and ectopic expression of EGFR, we revealed that EGFR is critical for HEV infection without affecting HEV RNA replication or assembly of progeny virus. We further unveiled that EGFR itself and its ligand-binding domain, rather than its signaling function, is responsible for the proviral effect. Modulation of EGF expression in HepaRG cells and primary human hepatocytes affected HEV infection. CONCLUSIONS: Taken together, our study provides novel insights into the life cycle of HEV and identified EGFR as a possible target for future antiviral strategies against HEV.


Assuntos
Vírus da Hepatite E , Hepatócitos , Humanos , Hepatócitos/metabolismo , Antivirais/farmacologia , Receptores ErbB/metabolismo , Interferência de RNA , Transdução de Sinais , Vírus da Hepatite E/genética , Replicação Viral
5.
PLoS Biol ; 19(12): e3001490, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962926

RESUMO

Over the past 20 years, 3 highly pathogenic human coronaviruses (HCoVs) have emerged-Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and, most recently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-demonstrating that coronaviruses (CoVs) pose a serious threat to human health and highlighting the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycles. Herein, we conducted 2 independent genome-wide CRISPR/Cas-9 knockout (KO) screens to identify MERS-CoV and HCoV-229E host dependency factors (HDFs) required for HCoV replication in the human Huh7 cell line. Top scoring genes were further validated and assessed in the context of MERS-CoV and HCoV-229E infection as well as SARS-CoV and SARS-CoV-2 infection. Strikingly, we found that several autophagy-related genes, including TMEM41B, MINAR1, and the immunophilin FKBP8, were common host factors required for pan-CoV replication. Importantly, inhibition of the immunophilin protein family with the compounds cyclosporine A, and the nonimmunosuppressive derivative alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures, which recapitulate the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrated that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.


Assuntos
Autofagia/genética , Sistemas CRISPR-Cas , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , SARS-CoV-2/genética , Antivirais/farmacologia , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Replicação Viral
6.
J Infect Dis ; 228(9): 1227-1230, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37129073

RESUMO

The spread of nonzoonotic monkeypox virus (MPXV) infections necessitates the reevaluation of hygiene measures. To date, only limited data are available on MPXV surface stability. Here, we evaluate the stability of infectious MPXV on stainless steel stored at different temperatures, while using different interfering substances to mimic environmental contamination. MPXV persistence increased with decreasing temperature. Additionally, we were able to show that MPXV could efficiently be inactivated by alcohol- and aldehyde-based surface disinfectants. These findings underline the stability of MPXV on inanimate surfaces and support the recommendations to use alcohol-based disinfectants as prevention measures or in outbreak situations.


Assuntos
Desinfetantes , Monkeypox virus , Desinfetantes/farmacologia , Etanol , Temperatura , Aldeídos
7.
Emerg Infect Dis ; 29(1): 189-192, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394568

RESUMO

Increasing nonzoonotic human monkeypox virus (MPXV) infections urge reevaluation of inactivation strategies. We demonstrate efficient inactivation of MPXV by 2 World Health Organization‒recommended alcohol-based hand rub solutions. When compared with other (re)emerging enveloped viruses, MPXV displayed the greatest stability. Our results support rigorous adherence to use of alcohol-based disinfectants.


Assuntos
Desinfetantes , Mpox , Vírus , Humanos , Monkeypox virus , Desinfetantes/farmacologia , Etanol , Mpox/epidemiologia , Mpox/prevenção & controle , 2-Propanol , Organização Mundial da Saúde
8.
J Med Virol ; 95(12): e29312, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38100621

RESUMO

For the prevention of infectious diseases, knowledge about potential transmission routes is essential. Pathogens can be transmitted directly (i.e. respiratory droplets, hand-to-hand contact) or indirectly via contaminated surfaces (fomites). In particular, frequently touched objects/surfaces may serve as transmission vehicles for different clinically relevant bacterial, fungal, and viral pathogens. Banknotes and coins offer ample surface area and are frequently exchanged between individuals. Consequently, many concerns have been raised in the recent past, that banknotes and coins could serve as vectors for the transmission of disease-causing microorganisms. This review summarizes the latest research on the potential of paper currency and coins to serve as sources of pathogenic viral, bacterial, and fungal agents. In contrast to the current perception of banknotes and coins as important transmission vehicles, current evidence suggests, that banknotes and coins do not pose a particular risk of pathogen infection for the public.


Assuntos
Fômites , Numismática , Humanos , Bactérias/genética
9.
Proc Natl Acad Sci U S A ; 117(3): 1731-1741, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31896581

RESUMO

Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and the leading cause for acute viral hepatitis worldwide. The virus is classified as a member of the genus Orthohepevirus A within the Hepeviridae family. Due to the absence of a robust cell culture model for HEV infection, the analysis of the viral life cycle, the development of effective antivirals and a vaccine is severely limited. In this study, we established a protocol based on the HEV genotype 3 p6 (Kernow C-1) and the human hepatoma cell lines HepG2 and HepG2/C3A with different media conditions to produce intracellular HEV cell culture-derived particles (HEVcc) with viral titers between 105 and 106 FFU/mL. Viral titers could be further enhanced by an HEV variant harboring a mutation in the RNA-dependent RNA polymerase. These HEVcc particles were characterized in density gradients and allowed the trans-complementation of subgenomic reporter HEV replicons. In addition, in vitro produced intracellular-derived particles were infectious in liver-humanized mice with high RNA copy numbers detectable in serum and feces. Efficient infection of primary human and swine hepatocytes using the developed protocol could be observed and was inhibited by ribavirin. Finally, RNA sequencing studies of HEV-infected primary human hepatocytes demonstrated a temporally structured transcriptional defense response. In conclusion, this robust cell culture model of HEV infection provides a powerful tool for studying viral-host interactions that should facilitate the discovery of antiviral drugs for this important zoonotic pathogen.


Assuntos
Vírus da Hepatite E/genética , Vírus da Hepatite E/fisiologia , Hepatite E/metabolismo , Hepatócitos/virologia , Animais , Antivirais/farmacologia , Carcinoma Hepatocelular , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Genótipo , Células Hep G2 , Hepatite E/virologia , Vírus da Hepatite E/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Replicon , Ribavirina/metabolismo , Suínos , Carga Viral , Replicação Viral
10.
J Infect Dis ; 226(9): 1608-1615, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512326

RESUMO

BACKGROUND: The contribution of droplet-contaminated surfaces for virus transmission has been discussed controversially in the context of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. More importantly, the risk of fomite-based transmission has not been systematically addressed. Therefore, the aim of this study was to evaluate whether confirmed hospitalized coronavirus disease 2019 (COVID-19) patients can contaminate stainless steel carriers by coughing or intensive moistening with saliva and to assess the risk of SARS-CoV-2 transmission upon detection of viral loads and infectious virus in cell culture. METHODS: We initiated a single-center observational study including 15 COVID-19 patients with a high baseline viral load (cycle threshold value ≤25). We documented clinical and laboratory parameters and used patient samples to perform virus culture, quantitative polymerase chain reaction, and virus sequencing. RESULTS: Nasopharyngeal and oropharyngeal swabs of all patients were positive for viral ribonucleic acid on the day of the study. Infectious SARS-CoV-2 could be isolated from 6 patient swabs (46.2%). After coughing, no infectious virus could be recovered, however, intensive moistening with saliva resulted in successful viral recovery from steel carriers of 5 patients (38.5%). CONCLUSIONS: Transmission of infectious SARS-CoV-2 via fomites is possible upon extensive moistening, but it is unlikely to occur in real-life scenarios and from droplet-contaminated fomites.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , SARS-CoV-2 , Fômites , Pandemias , Carga Viral
11.
J Hepatol ; 76(5): 1062-1069, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35085595

RESUMO

BACKGROUND & AIMS: Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide and is mainly transmitted via the fecal-oral route or through consumption of contaminated food products. Due to the lack of efficient cell culture systems for the propagation of HEV, limited data regarding its sensitivity to chemical disinfectants are available. Consequently, preventive and evidence-based hygienic guidelines on HEV disinfection are lacking. METHODS: We used a robust HEV genotype 3 cell culture model which enables quantification of viral infection of quasi-enveloped and naked HEV particles. For HEV genotype 1 infections, we used the primary isolate Sar55 in a fecal suspension. Standardized quantitative suspension tests using end point dilution and large-volume plating were performed for the determination of virucidal activity of alcohols (1-propanol, 2-propanol, ethanol), WHO disinfectant formulations and 5 different commercial hand disinfectants against HEV. Iodixanol gradients were conducted to elucidate the influence of ethanol on quasi-enveloped viral particles. RESULTS: Naked and quasi-enveloped HEV was resistant to alcohols as well as alcohol-based formulations recommended by the WHO. Of the tested commercial hand disinfectants only 1 product displayed virucidal activity against HEV. This activity could be linked to phosphoric acid as an essential ingredient. Finally, we observed that ethanol and possibly non-active alcohol-based disinfectants disrupt the quasi-envelope structure of HEV particles, while leaving the highly transmissible and infectious naked virions intact. CONCLUSIONS: Different alcohols and alcohol-based hand disinfectants were insufficient to eliminate HEV infectivity with the exception of 1 commercial ethanol-based product that included phosphoric acid. These findings have major implications for the development of measures to reduce viral transmission in clinical practice. LAY SUMMARY: Hepatitis E virus (HEV) showed a high level of resistance to alcohols and alcohol-based hand disinfectants. The addition of phosphoric acid to alcohol was essential for virucidal activity against HEV. This information should be used to guide improved hygiene measures for the prevention of HEV transmission.


Assuntos
Desinfetantes , Higienizadores de Mão , Vírus da Hepatite E , Hepatite E , Desinfetantes/farmacologia , Etanol/farmacologia , Vírus da Hepatite E/genética , Humanos
12.
J Infect Dis ; 224(3): 420-424, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33993274

RESUMO

The emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern with increased transmission dynamics has raised questions regarding stability and disinfection of these viruses. We analyzed surface stability and disinfection of the currently circulating SARS-CoV-2 variants B.1.1.7 and B.1.351 compared to wild type. Treatment with heat, soap, and ethanol revealed similar inactivation profiles indicative of a comparable susceptibility towards disinfection. Furthermore, we observed comparable surface stability on steel, silver, copper, and face masks. Overall, our data support the application of currently recommended hygiene measures to minimize the risk of B.1.1.7 and B.1.351 transmission.


Assuntos
Desinfecção , SARS-CoV-2/fisiologia , COVID-19/virologia , Desinfetantes/farmacologia , Temperatura Alta , Humanos , SARS-CoV-2/efeitos dos fármacos , Sabões/farmacologia
13.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502139

RESUMO

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the causative agent of the COVID19 pandemic. The SARS-CoV-2 genome encodes for a small accessory protein termed Orf9b, which targets the mitochondrial outer membrane protein TOM70 in infected cells. TOM70 is involved in a signaling cascade that ultimately leads to the induction of type I interferons (IFN-I). This cascade depends on the recruitment of Hsp90-bound proteins to the N-terminal domain of TOM70. Binding of Orf9b to TOM70 decreases the expression of IFN-I; however, the underlying mechanism remains elusive. We show that the binding of Orf9b to TOM70 inhibits the recruitment of Hsp90 and chaperone-associated proteins. We characterized the binding site of Orf9b within the C-terminal domain of TOM70 and found that a serine in position 53 of Orf9b and a glutamate in position 477 of TOM70 are crucial for the association of both proteins. A phosphomimetic variant Orf9bS53E showed drastically reduced binding to TOM70 and did not inhibit Hsp90 recruitment, suggesting that Orf9b-TOM70 complex formation is regulated by phosphorylation. Eventually, we identified the N-terminal TPR domain of TOM70 as a second binding site for Orf9b, which indicates a so far unobserved contribution of chaperones in the mitochondrial targeting of the viral protein.


Assuntos
COVID-19/transmissão , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , SARS-CoV-2/patogenicidade , Animais , Sítios de Ligação/genética , COVID-19/imunologia , COVID-19/virologia , Chlorocebus aethiops , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/isolamento & purificação , Humanos , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/isolamento & purificação , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mutação , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Fosfoproteínas/isolamento & purificação , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica/genética , Ligação Proteica/imunologia , Domínios Proteicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Células Vero
14.
J Infect Dis ; 222(8): 1289-1292, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32726430

RESUMO

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic creates a significant threat to global health. Recent studies suggested the significance of throat and salivary glands as major sites of virus replication and transmission during early coronavirus disease 2019, thus advocating application of oral antiseptics. However, the antiviral efficacy of oral rinsing solutions against SARS-CoV-2 has not been examined. Here, we evaluated the virucidal activity of different available oral rinses against SARS-CoV-2 under conditions mimicking nasopharyngeal secretions. Several formulations with significant SARS-CoV-2 inactivating properties in vitro support the idea that oral rinsing might reduce the viral load of saliva and could thus lower the transmission of SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Antissépticos Bucais/farmacologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Animais , Betacoronavirus/fisiologia , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/transmissão , Humanos , Pandemias , Pneumonia Viral/transmissão , SARS-CoV-2 , Saliva/virologia , Células Vero , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
15.
J Hepatol ; 73(3): 549-558, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32294532

RESUMO

BACKGROUND & AIMS: HCV is a positive-strand RNA virus that primarily infects human hepatocytes. Recent studies have reported that C19orf66 is expressed as an interferon (IFN)-stimulated gene; however, the intrinsic regulation of this gene within the liver as well as its antiviral effects against HCV remain elusive. METHODS: Expression of C19orf66 was quantified in both liver biopsies and primary human hepatocytes, with or without HCV infection. Mechanistic studies of the potent anti-HCV phenotype mediated by C19orf66 were conducted using state-of-the-art virological, biochemical and genetic approaches, as well as correlative light and electron microscopy and transcriptome and proteome analysis. RESULTS: Upregulation of C19orf66 mRNA was observed in both primary human hepatocytes upon HCV infection and in the livers of patients with chronic hepatitis C (CHC). In addition, pegIFNα/ribavirin therapy induced C19orf66 expression in patients with CHC. Transcriptomic profiling and whole cell proteomics of hepatoma cells ectopically expressing C19orf66 revealed no induction of other antiviral genes. Expression of C19orf66 restricted HCV infection, whereas CRIPSPR/Cas9 mediated knockout of C19orf66 attenuated IFN-mediated suppression of HCV replication. Co-immunoprecipitation followed by mass spectrometry identified a stress granule protein-dominated interactome of C19orf66. Studies with subgenomic HCV replicons and an expression system revealed that C19orf66 expression impairs HCV-induced elevation of phosphatidylinositol-4-phosphate, alters the morphology of the viral replication organelle (termed the membranous web) and thereby targets viral RNA replication. CONCLUSION: C19orf66 is an IFN-stimulated gene, which is upregulated in hepatocytes within the first hours post IFN treatment or HCV infection in vivo. The encoded protein possesses specific antiviral activity against HCV and targets the formation of the membranous web. Our study identifies C19orf66 as an IFN-inducible restriction factor with a novel antiviral mechanism that specifically targets HCV replication. LAY SUMMARY: Interferon-stimulated genes are thought to be important to for antiviral immune responses to HCV. Herein, we analysed C19orf66, an interferon-stimulated gene, which appears to inhibit HCV replication. It prevents the HCV-induced elevation of phosphatidylinositol-4-phosphate and alters the morphology of HCV's replication organelle.


Assuntos
Antivirais/uso terapêutico , Hepacivirus/genética , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/metabolismo , Interferons/uso terapêutico , Organelas/virologia , Proteínas de Ligação a RNA/metabolismo , Compartimentos de Replicação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Adulto , Linhagem Celular Tumoral , Feminino , Técnicas de Inativação de Genes , Genótipo , Células HEK293 , Hepatite C Crônica/patologia , Hepatite C Crônica/virologia , Hepatócitos/metabolismo , Humanos , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Organelas/efeitos dos fármacos , Organelas/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Replicon/efeitos dos fármacos , Replicon/genética , Ribavirina/uso terapêutico , Resultado do Tratamento , Replicação Viral/genética
17.
J Infect Dis ; 223(6): 1114-1115, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33370428
19.
J Med Chem ; 67(1): 289-321, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38127656

RESUMO

The synthesis of a library of halogenated rocaglate derivatives belonging to the flavagline class of natural products, of which silvestrol is the most prominent example, is reported. Their antiviral activity and cytotoxicity profile against a wide range of pathogenic viruses, including hepatitis E, Chikungunya, Rift Valley Fever virus and SARS-CoV-2, were determined. The incorporation of halogen substituents at positions 4', 6 and 8 was shown to have a significant effect on the antiviral activity of rocaglates, some of which even showed enhanced activity compared to CR-31-B and silvestrol.


Assuntos
Febre de Chikungunya , Vírus da Hepatite E , Vírus , Animais , Antivirais/farmacologia
20.
Nat Commun ; 15(1): 4855, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844458

RESUMO

Hepatitis E virus (HEV) is a long-neglected RNA virus and the major causative agent of acute viral hepatitis in humans. Recent data suggest that HEV has a very heterogeneous hypervariable region (HVR), which can tolerate major genomic rearrangements. In this study, we identify insertions of previously undescribed sequence snippets in serum samples of a ribavirin treatment failure patient. These insertions increase viral replication while not affecting sensitivity towards ribavirin in a subgenomic replicon assay. All insertions contain a predicted nuclear localization sequence and alanine scanning mutagenesis of lysine residues in the HVR influences viral replication. Sequential replacement of lysine residues additionally alters intracellular localization in a fluorescence dye-coupled construct. Furthermore, distinct sequence patterns outside the HVR are identified as viral determinants that recapitulate the enhancing effect. In conclusion, patient-derived insertions can increase HEV replication and synergistically acting viral determinants in and outside the HVR are described. These results will help to understand the underlying principles of viral adaptation by viral- and host-sequence snatching during the clinical course of infection.


Assuntos
Vírus da Hepatite E , Hepatite E , Ribavirina , Replicação Viral , Replicação Viral/genética , Vírus da Hepatite E/genética , Vírus da Hepatite E/fisiologia , Vírus da Hepatite E/efeitos dos fármacos , Humanos , Hepatite E/virologia , Hepatite E/tratamento farmacológico , Ribavirina/farmacologia , Mutagênese Insercional , Antivirais/farmacologia , RNA Viral/genética , Genoma Viral , Replicon/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA