Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 178(2): 283-301, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18298434

RESUMO

Environmental, developmental and genetic factors affect variation in wood properties at the chemical, anatomical and physical levels. Here, the phenotypic variation observed along the tree stem was explored and the hypothesis tested that this variation could be the result of the differential expression of genes/proteins during wood formation. Differentiating xylem samples of maritime pine (Pinus pinaster) were collected from the top (crown wood, CW) to the bottom (base wood, BW) of adult trees. These samples were characterized by Fourier transform infrared spectroscopy (FTIR) and analytical pyrolysis. Two main groups of samples, corresponding to CW and BW, could be distinguished from cell wall chemical composition. A genomic approach, combining large-scale production of expressed sequence tags (ESTs), gene expression profiling and quantitative proteomics analysis, allowed identification of 262 unigenes (out of 3512) and 231 proteins (out of 1372 spots) that were differentially expressed along the stem. A good relationship was found between functional categories from transcriptomic and proteomic data. A good fit between the molecular mechanisms involved in CW-BW formation and these two types of wood phenotypic differences was also observed. This work provides a list of candidate genes for wood properties that will be tested in forward genetics.


Assuntos
Ecossistema , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pinus/química , Pinus/genética , Madeira/metabolismo , Envelhecimento , Fenótipo , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteoma , Xilema/citologia , Xilema/metabolismo
2.
Tree Physiol ; 35(9): 1000-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26093373

RESUMO

We have carried out a candidate-gene-based association genetic study in Pinus pinaster Aiton and evaluated the predictive performance for genetic merit gain of the most significantly associated genes and single nucleotide polymorphisms (SNPs). We used a second generation 384-SNP array enriched with candidate genes for growth and wood properties to genotype mother trees collected in 20 natural populations covering most of the European distribution of the species. Phenotypic data for total height, polycyclism, root-collar diameter and biomass were obtained from a replicated provenance-progeny trial located in two sites with contrasting environments (Atlantic vs Mediterranean climate). General linear models identified strong associations between growth traits (total height and polycyclism) and four SNPs from the korrigan candidate gene, after multiple testing corrections using false discovery rate. The combined genomic breeding value predictions assessed for the four associated korrigan SNPs by ridge regression-best linear unbiased prediction (RR-BLUP) and cross-validation accounted for up to 8 and 15% of the phenotypic variance for height and polycyclic growth, respectively, and did not improve adding SNPs from other growth-related candidate genes. For root-collar diameter and total biomass, they accounted for 1.6 and 1.1% of the phenotypic variance, respectively, but increased to 15 and 4.1% when other SNPs from lp3.1, lp3.3 and cad were included in RR-BLUP models. These results point towards a desirable integration of candidate-gene studies as a means to pre-select relevant markers, and aid genomic selection in maritime pine breeding programs.


Assuntos
Arabidopsis/genética , Celulase/genética , Pinus/enzimologia , Pinus/crescimento & desenvolvimento , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Cruzamento , Genoma de Planta , Haplótipos/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Pinus/genética , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos
3.
Proteomics ; 5(14): 3731-51, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16127725

RESUMO

Wood is one of our most important natural resources. Surprisingly, we know hardly anything about the details of the process of wood formation. The aim of this work was to describe the main proteins expressed in wood forming tissue of a conifer species (Pinus pinaster Ait.). Using high resolution 2-DE with linear pH gradient ranging from 4 to 7, a total of 1039 spots were detected. Out of the 240 spots analyzed by MS/MS, 67.9% were identified, 16.7% presented no homology in the databases, and 15.4% corresponded to protein mixtures. Out of the 57 spots analyzed by MALDI-MS, only 15.8% were identified. Most of the 175 identified proteins play a role in either defense (19.4%), carbohydrates (16.6%) and amino acid (14.9%) metabolisms, genes and proteins expression (13.1%), cytoskeleton (8%), cell wall biosynthesis (5.7%), secondary (5.1%) and primary (4%) metabolisms. A summary of the identified proteins, their putative functions, and behavior in different types of wood are presented. This information was introduced into the PROTICdb database and is accessible at http://cbib1.cbib.u-bordeaux2.fr/Protic/Protic/home/index.php. Finally, the average protein amount was compared with their respective transcript abundance as quantified through EST counting in a cDNA-library constructed with mRNA extracted from wood forming tissue.


Assuntos
Pinus , Proteoma , Madeira , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel Bidimensional , Etiquetas de Sequências Expressas , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Planta ; 217(5): 820-30, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12768425

RESUMO

Wood formation is being increasingly studied at cellular and biochemical levels; however, gene expression and regulation during wood formation remain poorly understood. Up to six types of wood can be studied within the same tree (early wood, late wood, juvenile wood, mature wood, reaction wood and opposite wood). These six types are characterized by different chemical, physical and anatomical properties. Using the cDNA-amplified fragment length polymorphism (AFLP) technique, we screened several thousand cDNA fragments from differentiating xylem of maritime pine (Pinus pinaster Ait.) comparing early wood vs. late wood and compression wood vs. opposite wood after 8 or 120 days of bending. About 100 transcript-derived fragments (TDFs) showed qualitative or quantitative variations between these different samples. The relative abundance of these TDFs was subsequently analyzed by reverse Northern using RNA derived from early and late wood. Analysis of variance (ANOVA) was used to identify differentially expressed TDFs ( P<0.01) and reverse transcription-polymerase chain reaction to confirm the differential expression of some TDFs. Among the genes with a known function, transcript expression and nucleotide sequence variation analysis showed a cell wall glycine-rich protein to be a strong candidate gene for wood properties.


Assuntos
Pinus/genética , Proteínas de Plantas/genética , Estações do Ano , Transcrição Gênica/genética , Northern Blotting , Parede Celular/genética , Parede Celular/fisiologia , DNA Complementar/genética , DNA Complementar/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/genética , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/metabolismo , Glicina/genética , Glicina/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Peso Molecular , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , Proteínas de Plantas/metabolismo , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA