Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 20(5): 3427-3434, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32208710

RESUMO

Silicon carbide has recently been developed as a platform for optically addressable spin defects. In particular, the neutral divacancy in the 4H polytype displays an optically addressable spin-1 ground state and near-infrared optical emission. Here, we present the Purcell enhancement of a single neutral divacancy coupled to a photonic crystal cavity. We utilize a combination of nanolithographic techniques and a dopant-selective photoelectrochemical etch to produce suspended cavities with quality factors exceeding 5000. Subsequent coupling to a single divacancy leads to a Purcell factor of ∼50, which manifests as increased photoluminescence into the zero-phonon line and a shortened excited-state lifetime. Additionally, we measure coherent control of the divacancy ground-state spin inside the cavity nanostructure and demonstrate extended coherence through dynamical decoupling. This spin-cavity system represents an advance toward scalable long-distance entanglement protocols using silicon carbide that require the interference of indistinguishable photons from spatially separated single qubits.

2.
Proc Natl Acad Sci U S A ; 114(16): 4060-4065, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373543

RESUMO

Point defects in silicon carbide are rapidly becoming a platform of great interest for single-photon generation, quantum sensing, and quantum information science. Photonic crystal cavities (PCCs) can serve as an efficient light-matter interface both to augment the defect emission and to aid in studying the defects' properties. In this work, we fabricate 1D nanobeam PCCs in 4H-silicon carbide with embedded silicon vacancy centers. These cavities are used to achieve Purcell enhancement of two closely spaced defect zero-phonon lines (ZPL). Enhancements of >80-fold are measured using multiple techniques. Additionally, the nature of the cavity coupling to the different ZPLs is examined.

3.
Nano Lett ; 15(9): 6202-7, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26305122

RESUMO

Silicon carbide (SiC) is an intriguing material due to the presence of spin-active point defects in several polytypes, including 4H-SiC. For many quantum information and sensing applications involving such point defects, it is important to couple their emission to high quality optical cavities. Here we present the fabrication of 1D nanobeam photonic crystal cavities (PCC) in 4H-SiC using a dopant-selective etch to undercut a homoepitaxially grown epilayer of p-type 4H-SiC. These are the first PCCs demonstrated in 4H-SiC and show high quality factors (Q) of up to ∼7000 as well as low modal volumes of <0.5 (λ/n)(3). We take advantage of the high device yield of this fabrication method to characterize hundreds of devices and determine which PCC geometries are optimal. Additionally, we demonstrate two methods to tune the resonant wavelengths of the PCCs over 5 nm without significant degradation of the Q. Lastly, we characterize nanobeam PCCs coupled to luminescence from silicon vacancy point defects (V1, V2) in 4H-SiC. The fundamental modes of two such PCCs are tuned into spectral overlap with the zero phonon line (ZPL) of the V2 center, resulting in an intensity increase of up to 3-fold. These results are important steps on the path to developing 4H-SiC as a platform for quantum information and sensing.

4.
Nat Commun ; 14(1): 174, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635276

RESUMO

Understanding chemical reactivity and magnetism of 3d transition metal nanoparticles is of fundamental interest for applications in fields ranging from spintronics to catalysis. Here, we present an atomistic picture of the early stage of the oxidation mechanism and its impact on the magnetism of Co nanoparticles. Our experiments reveal a two-step process characterized by (i) the initial formation of small CoO crystallites across the nanoparticle surface, until their coalescence leads to structural completion of the oxide shell passivating the metallic core; (ii) progressive conversion of the CoO shell to Co3O4 and void formation due to the nanoscale Kirkendall effect. The Co nanoparticles remain highly reactive toward oxygen during phase (i), demonstrating the absence of a pressure gap whereby a low reactivity at low pressures is postulated. Our results provide an important benchmark for the development of theoretical models for the chemical reactivity in catalysis and magnetism during metal oxidation at the nanoscale.

5.
Nanoscale ; 12(1): 189-194, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31803884

RESUMO

Using state-of-the-art electron-beam lithography, Ising-type nanomagnets may be defined onto nearly any two-dimensional pattern imaginable. The ability to directly observe magnetic configurations achieved in such artificial spin systems makes them a perfect playground for the realization of artificial spin glasses. However, no experimental realization of a finite-temperature artificial spin glass has been achieved so far. Here, we aim to get a significant step closer in achieving that goal by introducing an artificial spin system with random interactions and increased effective dimension: dipolar Cayley tree. Through synchrotron-based photoemission electron microscopy, we show that an improved balance of ferro- and antiferromagnetic ordering can be achieved in this type of system. This combined with an effective dimension as high as d = 2.72 suggests that future systems generated out of these building blocks can host finite temperature spin glass phases, allowing for real-time observation of glassy dynamics.

6.
Nat Nanotechnol ; 13(12): 1161-1166, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30275493

RESUMO

Magnetic skyrmions are knot-like quasiparticles. They are candidates for non-volatile data storage in which information is moved between fixed read and write terminals. The read-out operation of skyrmion-based spintronic devices will rely on the electrical detection of a single magnetic skyrmion within a nanostructure. Here we present Pt/Co/Ir nanodiscs that support skyrmions at room temperature. We measured the Hall resistivity and simultaneously imaged the spin texture using magnetic scanning transmission X-ray microscopy. The Hall resistivity is correlated to both the presence and size of the skyrmion. The size-dependent part matches the expected anomalous Hall signal when averaging the magnetization over the entire disc. We observed a resistivity contribution that only depends on the number and sign of skyrmion-like objects present in the disc. Each skyrmion gives rise to 22 ± 2 nΩ cm irrespective of its size. This contribution needs to be considered in all-electrical detection schemes applied to skyrmion-based devices. Not only the area of Néel skyrmions but also their number and sign contribute to their Hall resistivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA