Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Immunology ; 152(1): 65-73, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28437578

RESUMO

Immune homeostasis requires the tight, tissue-specific control of the different CD4+ Foxp3+ regulatory T (Treg) cell populations. The cadherin-binding inhibitory receptor killer cell lectin-like receptor G1 (KLRG1) is expressed by a subpopulation of Treg cells with GATA3+ effector phenotype. Although such Treg cells are important for the immune balance, especially in the gut, the role of KLRG1 in Treg cells has not been assessed. Using KLRG1 knockout mice, we found that KLRG1 deficiency does not affect Treg cell frequencies in spleen, mesenteric lymph nodes or intestine, or frequencies of GATA3+ Treg cells in the gut. KLRG1-deficient Treg cells were also protective in a T-cell transfer model of colitis. Hence, KLRG1 is not essential for the development or activity of the general Treg cell population. We then checked the effects of KLRG1 on Treg cell activation. In line with KLRG1's reported inhibitory activity, in vitro KLRG1 cross-linking dampened the Treg cell T-cell receptor response. Consistently, lack of KLRG1 on Treg cells conferred on them a competitive advantage in the gut, but not in lymphoid organs. Hence, although absence of KLRG1 is not enough to increase intestinal Treg cells in KLRG1 knockout mice, KLRG1 ligation reduces T-cell receptor signals and the competitive fitness of individual Treg cells in the intestine.


Assuntos
Mucosa Intestinal/imunologia , Ativação Linfocitária , Receptores Imunológicos/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Células Cultivadas , Colite/imunologia , Colite/prevenção & controle , Modelos Animais de Doenças , Fator de Transcrição GATA3/imunologia , Fator de Transcrição GATA3/metabolismo , Genótipo , Imunidade nas Mucosas , Mucosa Intestinal/metabolismo , Lectinas Tipo C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Transdução de Sinais , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/transplante , Fatores de Tempo
2.
Immunology ; 152(1): 74-88, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28437001

RESUMO

CD4+ Foxp3+ regulatory T (Treg) cells include differentiated populations of effector Treg cells characterized by the expression of specific transcription factors. Tumours, including intestinal malignancies, often present with local accumulation of Treg cells that can prevent tumour clearance, but how tumour progression leads to Treg cell accumulation is incompletely understood. Here using genetically modified mouse models we show that ablation of E-cadherin, a process associated with epithelial to mesenchymal transition and tumour progression, promotes the accumulation of intestinal Treg cells by the specific accumulation of the KLRG1+ GATA3+ Treg subset. Epithelial E-cadherin ablation activates the ß-catenin pathway, and we find that increasing ß-catenin signals in intestinal epithelial cells also boosts Treg cell frequencies through local accumulation of KLRG1+ GATA3+ Treg cells. Both E-cadherin ablation and increased ß-catenin signals resulted in epithelial cells with higher levels of interleukin-33, a cytokine that preferentially expands KLRG1+ GATA3+ Treg cells. Tumours often present reduced E-cadherin expression and increased ß-catenin signalling and interleukin-33 production. Accordingly, Treg cell accumulation in intestinal tumours from APCmin/+ mice was exclusively due to the increase in KLRG1+ GATA3+ Treg cells. Our data identify a novel axis through which epithelial cells control local Treg cell subsets, which may be activated during intestinal tumorigenesis.


Assuntos
Células Epiteliais/imunologia , Fator de Transcrição GATA3/imunologia , Mucosa Intestinal/imunologia , Neoplasias Intestinais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptores Imunológicos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Caderinas/imunologia , Caderinas/metabolismo , Proteínas Cdh1/genética , Proteínas Cdh1/imunologia , Proteínas Cdh1/metabolismo , Células Cultivadas , Quimiotaxia de Leucócito , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Fator de Transcrição GATA3/metabolismo , Genes APC , Predisposição Genética para Doença , Interleucina-33/imunologia , Interleucina-33/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Neoplasias Intestinais/genética , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Lectinas Tipo C , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , beta Catenina/genética , beta Catenina/imunologia , beta Catenina/metabolismo
3.
J Immunol ; 195(10): 4742-52, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26453746

RESUMO

CD4(+) T cells polarize into effector Th subsets characterized by signature transcription factors and cytokines. Although T-bet drives Th1 responses and represses the alternative Th2, Th17, and Foxp3(+) regulatory T cell fates, the role of the T-bet-related transcription factor eomesodermin (Eomes) in CD4(+) T cells is less well understood. In this study, we analyze the expression and effects of Eomes in mouse CD4(+) T lymphocytes. We find that Eomes is readily expressed in activated CD4(+) Th1 T cells in vivo. Eomes(+) CD4(+) T cells accumulated in old mice, under lymphopenic conditions in a T cell transfer model of colitis, and upon oral Ag administration. However, despite its expression, genetic deletion of Eomes in CD4(+) T cells did not impact on IFN-γ production nor increase Th2 or Th17 responses. In contrast, Eomes deficiency favored the accumulation of Foxp3(+) cells in old mice, after in vivo differentiation of Eomes-deficient naive CD4(+) T cells, and in response to oral Ag in a cell-intrinsic way. Enforced Eomes expression during in vitro regulatory T cell induction also reduced Foxp3 transcription. Likewise, bystander Eomes-deficient CD4(+) T cells were more efficient at protecting from experimental autoimmune encephalitis compared with wild-type CD4(+) T cells. This enhanced capacity of Eomes-deficient CD4(+) T cells to inhibit EAE in trans was associated with an enhanced frequency of Foxp3(+) cells. Our data identify a novel role for Eomes in CD4(+) T cells and indicate that Eomes expression may act by limiting Foxp3 induction, which may contribute to the association of EOMES to susceptibility to multiple sclerosis.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Fatores de Transcrição Forkhead/biossíntese , Proteínas com Domínio T/fisiologia , Envelhecimento/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas com Domínio T/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
4.
J Proteome Res ; 10(3): 1062-72, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21204586

RESUMO

Protein aggregation, which is associated with the impairment of the ubiquitin proteasome system, is a hallmark of many neurodegenerative diseases. To better understand the contribution of proteasome inhibition in aggregation, we analyzed which proteins may potentially localize in chemically induced aggregates in human neuroblastoma tissue culture cells. We enriched for proteins in high-density structures by using a sucrose gradient in combination with stable isotope labeling with amino acids in cell culture (SILAC). The quantitative analysis allowed us to distinguish which proteins were specifically affected by the proteasome inhibition. We identified 642 potentially aggregating proteins, including the p62/sequestosome 1 and NBR1 ubiquitin-binding proteins involved in aggregation. We also identified the ubiquitin-associated protein 2 like (UBAP2L). We verified that it cofractionated with ubiquitin in the high-density fraction and that it was colocalized in the ubiquitin-containing aggregates after proteasome inhibition. In addition, we identified several chaperone proteins and used data from protein interaction networks to show that they potentially interact with distinct subgroups of proteins within the aggregating structures. Several other proteins associated with neurodegenerative diseases, like UCHL1, were identified, further underlining the potential of our analysis to better understand the aggregation process and proteotoxic stress caused by proteasome inhibition.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Proteínas/química , Proteínas/metabolismo , Proteoma/análise , Ubiquitina/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Humanos , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Neuroblastoma/metabolismo , Proteínas/genética , Proteômica/métodos
5.
PLoS One ; 10(9): e0137393, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26352149

RESUMO

T lymphocytes elicit specific responses after recognizing cognate antigen. However, antigen-experienced T cells can also respond to non-cognate stimuli, such as cytokines. CD4+ Foxp3+ regulatory T cells (Treg) exhibit an antigen-experienced-like phenotype. Treg can regulate T cell responses in an antigen-specific or bystander way, and it is still unclear as to which extent they rely on T cell receptor (TCR) signals. The study of the antigen response of Treg has been hampered by the lack of downstream readouts for TCR stimuli. Here we assess the effects of TCR signals on the expression of a classical marker of early T cell activation, CD69. Although it can be induced following cytokine exposure, CD69 is commonly used as a readout for antigen response on T cells. We established that upon in vitro TCR stimulation CD69 induction on Foxp3+ Treg cells was more dependent on signaling via soluble factors than on TCR activation. By contrast, expression of the activation marker Nur77 was only induced after TCR stimulation. Our data suggest that Treg are more sensitive to TCR-independent signals than Foxp3- cells, which could contribute to their bystander activity.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Citocinas/farmacologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
6.
PLoS One ; 5(12): e14410, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21203451

RESUMO

BACKGROUND: Protein aggregation is a hallmark of many neurodegenerative diseases and has been linked to the failure to degrade misfolded and damaged proteins. In the cell, aberrant proteins are degraded by the ubiquitin proteasome system that mainly targets short-lived proteins, or by the lysosomes that mostly clear long-lived and poorly soluble proteins. Both systems are interconnected and, in some instances, autophagy can redirect proteasome substrates to the lysosomes. PRINCIPAL FINDINGS: To better understand the interplay between these two systems, we established a neuroblastoma cell population stably expressing the GFP-ubiquitin fusion protein. We show that inhibition of the proteasome leads to the formation of large ubiquitin-containing inclusions accompanied by lower solubility of the ubiquitin conjugates. Strikingly, the formation of the ubiquitin-containing aggregates does not require ectopic expression of disease-specific proteins. Moreover, formation of these focused inclusions caused by proteasome inhibition requires the lysine 63 (K63) of ubiquitin. We then assessed selected compounds that stimulate autophagy and found that the antihelmintic chemical niclosamide prevents large aggregate formation induced by proteasome inhibition, while the prototypical mTORC1 inhibitor rapamycin had no apparent effect. Niclosamide also precludes the accumulation of poly-ubiquitinated proteins and of p62 upon proteasome inhibition. Moreover, niclosamide induces a change in lysosome distribution in the cell that, in the absence of proteasome activity, may favor the uptake into lysosomes of ubiquitinated proteins before they form large aggregates. CONCLUSIONS: Our results indicate that proteasome inhibition provokes the formation of large ubiquitin containing aggregates in tissue culture cells, even in the absence of disease specific proteins. Furthermore our study suggests that the autophagy-inducing compound niclosamide may promote the selective clearance of ubiquitinated proteins in the absence of proteasome activity.


Assuntos
Niclosamida/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Ubiquitina/química , Antinematódeos/farmacologia , Autofagia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Microtúbulos/metabolismo , Complexos Multiproteicos , Doenças Neurodegenerativas/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Sirolimo/farmacologia , Solubilidade , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA