Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Rev ; 119(7): 4628-4683, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30854847

RESUMO

Halide photoredox chemistry is of both practical and fundamental interest. Practical applications have largely focused on solar energy conversion with hydrogen gas, through HX splitting, and electrical power generation, in regenerative photoelectrochemical and photovoltaic cells. On a more fundamental level, halide photoredox chemistry provides a unique means to generate and characterize one electron transfer chemistry that is intimately coupled with X-X bond-breaking and -forming reactivity. This review aims to deliver a background on the solution chemistry of I, Br, and Cl that enables readers to understand and utilize the most recent advances in halide photoredox chemistry research. These include reactions initiated through outer-sphere, halide-to-metal, and metal-to-ligand charge-transfer excited states. Kosower's salt, 1-methylpyridinium iodide, provides an early outer-sphere charge-transfer excited state that reports on solvent polarity. A plethora of new inner-sphere complexes based on transition and main group metal halide complexes that show promise for HX splitting are described. Long-lived charge-transfer excited states that undergo redox reactions with one or more halogen species are detailed. The review concludes with some key goals for future research that promise to direct the field of halide photoredox chemistry to even greater heights.

2.
J Chem Phys ; 150(4): 041719, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709314

RESUMO

Temperature dependent kinetics for back-electron transfer (BET) from electrons in TiO2 or SnO2/TiO2 core/shell nanoparticles to oxidized donor-bridge-acceptor (D-B-A) sensitizers is reported over a 110° range. Two D-B-A sensitizers (CF3-p and CF3-x) were utilized that differed only by the nature of the bridging ligand: a xylyl spacer that largely insulated the two redox active centers and a phenyl bridge that promoted strong electronic coupling and an adiabatic electron transfer mechanism. An Arrhenius analysis revealed that the activation energies were significantly larger for the core/shell oxides, Ea = 32 ± 4 kJ/mol, compared to TiO2 alone, Ea = 22 ± 6 kJ/mol. The barriers for BET on sensitized TiO2 were within the same range as previous literature reports, while this study represents the first quantification for SnO2/TiO2 core/shell materials. Two different models were proposed to rationalize the larger barrier for the core/shell materials: (1) a band edge offset model and (2) a low energy trap state model with recombination from the TiO2 rutile polymorph shell. The latter model was preferred and is in better agreement with the experimental data. The kinetic analysis also afforded the forward and reverse rate constants for the intramolecular equilibrium. In accordance with theoretical predictions and previous research, the absolute value of the free energy change was smaller for the adiabatic equilibrium provided by the phenyl bridge, i.e., |ΔGo ad| <|ΔGo|.

3.
J Am Chem Soc ; 140(16): 5447-5456, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29595247

RESUMO

The complex [Ru(deeb)(bpz)2]2+ (RuBPZ2+, deeb = 4,4'-diethylester-2,2'-bipyridine, bpz = 2,2'-bipyrazine) forms a single ion pair with bromide, [RuBPZ2+, Br-]+, with Keq = 8400 ± 200 M-1 in acetone. The RuBPZ2+ displayed photoluminescence (PL) at room temperature with a lifetime of 1.75 µs. The addition of bromide to a RuBPZ2+ acetone solution led to significant PL quenching and Stern-Volmer plots showed upward curvature. Time-resolved PL measurements identified two excited state quenching pathways, static and dynamic, which were operative toward [RuBPZ2+, Br-]+ and free RuBPZ2+, respectively. The single ion-pair [RuBPZ2+, Br-]+* had a lifetime of 45 ± 5 ns, consistent with an electron transfer rate constant, ket = (2.2 ± 0.3) × 107 s-1. In contrast, RuBPZ2+* was dynamically quenched by bromide with a quenching rate constant, kq = (8.1 ± 0.1) × 1010 M-1 s-1. Nanosecond transient absorption revealed that both the static and dynamic pathways yielded RuBPZ+ and Br2•- products that underwent recombination to regenerate the ground state with a second-order rate constant, kcr = (2.3 ± 0.5) × 1010 M-1 s-1. Kinetic analysis revealed that RuBPZ+ was a primary photoproduct, while Br2•- was secondary product formed by the reaction of a Br• with Br-, k = (1.1 ± 0.2) × 1010 M-1 s-1. Marcus theory afforded an estimate of the formal reduction potential for E0(Br•/-) in acetone, 1.42 V vs NHE. A 1H NMR analysis indicated that the ion-paired bromide was preferentially situated close to the RuII center. Prolonged steady state photolysis of RuBPZ2+ and bromide yielded two ligand-substituted photoproducts, cis- and trans-Ru(deeb)(bpz)Br2. A photochemical intermediate, proposed to be [Ru(deeb)(bpz)(κ1-bpz)(Br)]+, was found to absorb a second photon to yield cis- and trans-Ru(deeb)(bpz)Br2 photoproducts.

4.
J Am Chem Soc ; 139(44): 15612-15615, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29058884

RESUMO

Hydrobromic acid (HBr) has significant potential as an inexpensive feedstock for hydrogen gas (H2) solar fuel production through HBr splitting. Mesoporous thin films of anatase TiO2 or SnO2/TiO2 core-shell nanoparticles were sensitized to visible light with a new RuII polypyridyl complex that served as a photocatalyst for bromide oxidation. These thin films were tested as photoelectrodes in dye-sensitized photoelectrosynthesis cells. In 1 N HBr (aq), the photocatalyst undergoes excited-state electron injection and light-driven Br- oxidation. The injected electrons induce proton reduction at a Pt electrode. Under 100 mW cm-2 white-light illumination, sustained photocurrents of 1.5 mA cm-2 were measured under an applied bias. Faradaic efficiencies of 71 ± 5% for Br- oxidation and 94 ± 2% for H2 production were measured. A 12 µmol h-1 sustained rate of H2 production was maintained during illumination. The results demonstrate a molecular approach to HBr splitting with a visible light absorbing complex capable of aqueous Br- oxidation and excited-state electron injection.

5.
ACS Appl Mater Interfaces ; 11(30): 27453-27463, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31260245

RESUMO

Three chromophores of the general form [Ru(bpy')2(4,4'-(PO3H2)2-2,2'-bipyridine)]2+, where bpy' is 4,4'-(C(CH3)3)2-2,2'-bipyridine (Ru(dtb)2P); 4,4'-(CH3O)2-2,2'-bipyridine (Ru(OMe)2P), and 2,2'-bipyridine (RuP) were anchored to mesoporous thin films of TiO2 nanocrystallites at saturation surface coverages to investigate lateral self-exchange RuIII/II intermolecular hole hopping in 0.1 M LiClO4/CH3CN electrolytes. Hole hopping was initiated by a potential step 500 mV positive of the E1/2 (RuIII/II) potential or by pulsed laser (532 nm, 8 ns fwhm) excitation and monitored by visible absorption chronoabsorptometry and time-resolved absorption anisotropy measurements, respectively. The hole hopping rate constant kR extracted from the potential step data revealed self-exchange rate constants that followed the trend: TiO2|Ru(OMe)2P (ket = 1.4 × 106 s-1) > TiO2|RuP (7.1 × 105 s-1) > TiO2|Ru(dtb)2P (6.5 × 104 s-1). Analysis of the anisotropy data with Monte Carlo simulations provided hole hopping rate constants for TiO2|RuP and TiO2|Ru(dtb)2P that were within experimental error the same as that measured with the potential step. The hole hopping rate constants were found to trend with the TiO2(e-)|RuIII → TiO2|RuII charge recombination rate constants. The atomic layer deposition of an ∼10 Å layer of Al2O3 on top of the dye-sensitized films was found to prevent hole hopping by both initiation methods even though the chromophore surface coverage exceeded the percolation threshold and excited-state injection was efficient. The dramatic hole hopping turnoff was attributed to a larger outer-sphere reorganization energy for self-exchange due to the restricted access of electrolyte to the redox active chromophores. The implications of these findings for solar energy conversion applications are discussed.

6.
Chem Sci ; 10(16): 4436-4444, 2019 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31057771

RESUMO

We describe here the preparation and characterization of a photocathode assembly for CO2 reduction to CO in 0.1 M LiClO4 acetonitrile. The assembly was formed on 1.0 µm thick mesoporous films of NiO using a layer-by-layer procedure based on Zr(iv)-phosphonate bridging units. The structure of the Zr(iv) bridged assembly, abbreviated as NiO|-DA-RuCP2 2+-Re(i), where DA is the dianiline-based electron donor (N,N,N',N'-((CH2)3PO3H2)4-4,4'-dianiline), RuCP2+ is the light absorber [Ru((4,4'-(PO3H2CH2)2-2,2'-bipyridine)(2,2'-bipyridine))2]2+, and Re(i) is the CO2 reduction catalyst, ReI((4,4'-PO3H2CH2)2-2,2'-bipyridine)(CO)3Cl. Visible light excitation of the assembly in CO2 saturated solution resulted in CO2 reduction to CO. A steady-state photocurrent density of 65 µA cm-2 was achieved under one sun illumination and an IPCE value of 1.9% was obtained with 450 nm illumination. The importance of the DA aniline donor in the assembly as an initial site for reduction of the RuCP2+ excited state was demonstrated by an 8 times higher photocurrent generated with DA present in the surface film compared to a control without DA. Nanosecond transient absorption measurements showed that the expected reduced one-electron intermediate, RuCP+, was formed on a sub-nanosecond time scale with back electron transfer to the electrode on the microsecond timescale which competes with forward electron transfer to the Re(i) catalyst at t 1/2 = 2.6 µs (k ET = 2.7 × 105 s-1).

7.
ACS Appl Mater Interfaces ; 10(37): 31312-31323, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30130392

RESUMO

Dye-sensitized bromide oxidation was investigated using a series of four ruthenium polypyridyl photocatalysts anchored to SnO2/TiO2 core/shell mesoporous thin films through 2,2'-bipyridine-4,4'-diphosphonic acid anchoring groups. The ground- and excited-state reduction potentials were tuned over 500 mV by the introduction of electron withdrawing groups in the 4 and 4' positions of the ancillary bipyridine ligands. Upon light excitation of the surface-bound photocatalysts, excited-state electron injection yielded an oxidized photocatalyst that was regenerated through bromide oxidation. High injection quantum yields (Φinj) and regeneration quantum yields (Φreg) were essential to obtain efficient bromide oxidation yet required a photocatalyst that is both a potent photoreductant and a strong oxidant after excited-state injection. The four photocatalysts utilized in this manuscript ranged from unity Φinj (1.0) and minimal Φreg (0.037) to minimal Φinj (0.09) and unity Φreg (1.0). The photocatalyst that displayed the highest overall dye-sensitized photoelectrosynthesis cell performances exhibited near unity Φreg (0.99), while a significant Φinj was still preserved (0.59). Thus, these results highlighted the delicate interplay between the ground- and excited-state reduction potentials of photocatalysts for dye-sensitized hydrobromic acid splitting.

8.
ACS Appl Mater Interfaces ; 10(26): 22821-22833, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29883103

RESUMO

A series of 18 ruthenium(II) polypyridyl complexes were synthesized and evaluated under electrochemically oxidative conditions, which generates the Ru(III) oxidation state and mimics the harsh conditions experienced during the kinetically limited regime that can occur in dye-sensitized solar cells (DSSCs) and dye-sensitized photo-electrosynthesis cells, to further develop fundamental insights into the factors governing molecular sensitizer surface stability in aqueous 0.1 M HClO4. Both desorption and oxidatively induced ligand substitution were observed on planar fluorine-doped tin oxide (FTO) electrodes, with a dependence on the E1/2 Ru(III/II) redox potential dictating the comparative ratios of the processes. Complexes such as RuP4OMe ( E1/2 = 0.91 vs Ag/AgCl) displayed virtually only desorption, while complexes such as RuPbpz ( E1/2 > 1.62 V vs Ag/AgCl) displayed only chemical decomposition. Comparing isomers of 4,4'- and 5,5'-disubstituted-2,2'-bipyridine ancillary ligands, a dramatic increase in the rate of desorption of the Ru(III) complexes was observed for the 5,5'-ligands. Nanoscopic indium-doped tin oxide thin films (nanoITO) were also sensitized and analyzed with cyclic voltammetry, UV-vis absorption spectroscopy, and X-ray photoelectron spectroscopy, allowing for further distinction of desorption versus ligand-substitution processes. Desorption loss to bulk solution associated with the planar surface of FTO is essentially non-existent on nanoITO, where both desorption and ligand substitution are shut down with RuP4OMe. These results revealed that minimizing time spent in the oxidized form, incorporating electron-donating groups, maximizing hydrophobicity, and minimizing molecular bulk near the adsorbed ligand are critical to optimizing the performance of ruthenium(II) polypyridyl complexes in dye-sensitized devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA