Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Ecol ; 26(10): 2738-2756, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28256021

RESUMO

Spatially varying selection triggers differential adaptation of local populations. Here, we mined the determinants of local adaptation at the genomewide scale in the two closest maize wild relatives, the teosintes Zea mays ssp parviglumis and ssp. mexicana. We sequenced 120 individuals from six populations: two lowland, two intermediate and two highland populations sampled along two altitudinal gradients. We detected 8 479 581 single nucleotide polymorphisms (SNPs) covered in the six populations with an average sequencing depth per site per population ranging from 17.0× to 32.2×. Population diversity varied from 0.10 to 0.15, and linkage disequilibrium decayed very rapidly. We combined two differentiation-based methods, and correlation of allele frequencies with environmental variables to detect outlier SNPs. Outlier SNPs displayed significant clustering. From clusters, we identified 47 candidate regions. We further modified a haplotype-based method to incorporate genotype uncertainties in haplotype calling, and applied it to candidate regions. We retrieved evidence for selection at the haplotype level in 53% of our candidate regions, and in 70% of the cases the same haplotype was selected in the two lowland or the two highland populations. We recovered a candidate region located within a previously characterized inversion on chromosome 1. We found evidence of a soft sweep at a locus involved in leaf macrohair variation. Finally, our results revealed frequent colocalization between our candidate regions and loci involved in the variation of traits associated with plant-soil interactions such as root morphology, aluminium and low phosphorus tolerance. Soil therefore appears to be a major driver of local adaptation in teosintes.


Assuntos
Adaptação Fisiológica/genética , Genética Populacional , Zea mays/genética , Altitude , Frequência do Gene , Genoma de Planta , Genótipo , Haplótipos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Seleção Genética
2.
Nat Commun ; 14(1): 8376, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104120

RESUMO

Most hypertension-related genome-wide association studies (GWASs) focus on non-African populations, despite hypertension (a major risk factor for cardiovascular disease) being highly prevalent in Africa. The AWI-Gen study GWAS meta-analysis for blood pressure (BP)-related traits (systolic and diastolic BP, pulse pressure, mean-arterial pressure and hypertension) from three sub-Saharan African geographic regions (N = 10,775), identifies two novel genome-wide significant signals (p < 5E-08): systolic BP near P2RY1 (rs77846204; intergenic variant, p = 4.95E-08) and pulse pressure near LINC01256 (rs80141533; intergenic variant, p = 1.76E-08). No genome-wide signals are detected for the AWI-Gen GWAS meta-analysis with previous African-ancestry GWASs (UK Biobank (African), Uganda Genome Resource). Suggestive signals (p < 5E-06) are observed for all traits, with 29 SNPs associating with more than one trait and several replicating known associations. Polygenic risk scores (PRSs) developed from studies on different ancestries have limited transferability, with multi-ancestry PRS providing better prediction. This study provides insights into the genetics of BP variation in African populations.


Assuntos
Estudo de Associação Genômica Ampla , Hipertensão , Humanos , Pressão Sanguínea/genética , Hipertensão/epidemiologia , Hipertensão/genética , População Negra/genética , Uganda , Polimorfismo de Nucleotídeo Único
3.
J Evol Biol ; 24(10): 2087-98, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21682788

RESUMO

Complex phenotypes are often controlled by many interacting genes. One question emerging from such organization is how selection, acting at the phenotypic level, shapes the evolution of genes involved in regulatory networks controlling the phenotypes. We studied this issue through a matrix model of such networks. In a population submitted to selection, we simulated the evolution of a quantitative trait controlled by a set of loci that regulate each other through positive or negative interactions. Investigating several levels of selection intensity on the trait, we studied the evolution of regulation intensity between the genes and the evolution of the genetic diversity of those genes as an indirect measure of the strength of selection acting on them. We show that an increasing intensity of selection on the phenotype leads to an increased level of regulation between the loci. Moreover, we found that the genes responding more strongly to selection within the network were those evolving towards stronger regulatory action on the other genes and/or those that are the less regulated by the other genes. This observation is strongest for an intermediate level of selection. This may explain why several experimental studies have shown evidence of selection on regulatory genes inside gene networks.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Locos de Características Quantitativas , Seleção Genética , Evolução Molecular , Genótipo , Fenótipo , Dinâmica Populacional
4.
Front Genet ; 12: 699445, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745203

RESUMO

Background: Despite hypertension being highly prevalent in individuals with African-ancestry, they are under-represented in large genome-wide association studies. Inclusion of African participants is essential to better understand genetic associations with blood pressure-related traits in Africans. This systematic review critically evaluates existing studies with African-ancestry participants and identifies knowledge gaps. Methods: We followed the PRISMA protocol, HuGE Review handbook to identify literature on original research, in English, on genetic association studies for blood pressure-related traits (systolic and diastolic blood pressure, pulse and mean-arterial pressure, and hypertension) in populations with African-ancestry (January 2007 to April 2020). A narrative synthesis of the evidence was conducted. Results: Twelve studies with African-ancestry participants met the eligibility criteria, within which 10 studies met the additional genetic association data criteria (i.e., reporting only on African-ancestry participants). Across the five blood pressure-related traits, 26 genome-wide significantly associated SNPs were identified, with six SNPs linked to more than one trait, illustrating pleiotropic effects. Among the SNP associations, 12 had not previously been described in non-African studies. Discussion: The limited number of relevant studies highlights the dearth of genomic association studies on participants with African-ancestry, especially those located within Africa. Variations in study methodology, participant inclusion, adjustment for covariates (e.g., antihypertensive medication) and relatively small sample sizes make comparisons challenging, and have resulted in fewer significant associations, compared to large European studies. Regional variation in the prevalence and associated risk factors of hypertension across Africa makes a compelling argument to develop African cohorts to facilitate large genomic studies, using African-centric arrays. Data harmonisation and comparable study designs, such as described in the H3Africa CHAIR initiative, provide a good example toward achieving this goal. Other relevant information: SS and J-TB were funded by the South African National Research Foundation. MR is a South African Research Chair in Genomics and Bioinformatics of African populations hosted by the University of the Witwatersrand, funded by the Department of Science and Innovation, and administered by the NRF. This review was registered at PROSPERO (registration number: CRD42020179221) and OSF (registration DOI: 10.17605/OSF.IO/QT2HA).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA