Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 293(51): 19812-19822, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30397182

RESUMO

Chronic wasting disease (CWD) is a fatal neurodegenerative disease that affects cervids in North America and now Europe. No effective measures are available to control CWD. We hypothesized that active vaccination with homologous and aggregation-prone recombinant prion protein (PrP) could overcome self-tolerance and induce autoantibody production against the cellular isoform of PrP (PrPC), which would be protective against CWD infection from peripheral routes. Five groups of transgenic mice expressing elk PrP (TgElk) were vaccinated with either the adjuvant CpG alone or one of four recombinant PrP immunogens: deer dimer (Ddi); deer monomer (Dmo); mouse dimer (Mdi); and mouse monomer (Mmo). Mice were then challenged intraperitoneally with elk CWD prions. All vaccinated mice developed ELISA-detectable antibody titers against PrP. Importantly, all four vaccinated groups survived longer than the control group, with the Mmo-immunized group exhibiting 60% prolongation of mean survival time compared with the control group (183 versus 114 days post-inoculation). We tested for prion infection in brain and spleen of all clinically sick mice. Notably, the attack rate was 100% as revealed by positive CWD signals in all tested tissues when assessed with Western blotting, real-time quaking-induced conversion, and immunohistochemistry. Our pilot study in reindeer indicated appreciable humoral immune responses to Mdi and Ddi immunogens, and the post-immune sera from the Ddi-vaccinated reindeer mitigated CWD propagation in a cell culture model (CWD-RK13). Taken together, our study provides very promising vaccine candidates against CWD, but further studies in cervids are required to investigate vaccine efficacy in the natural CWD hosts.


Assuntos
Proteínas Priônicas/imunologia , Proteínas Recombinantes/imunologia , Rena/imunologia , Vacinação , Doença de Emaciação Crônica/prevenção & controle , Animais , Autoanticorpos/imunologia , Feminino , Camundongos , Camundongos Transgênicos , Doença de Emaciação Crônica/imunologia
2.
Int J Pharm ; 608: 121065, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34481005

RESUMO

Continuous powder mixing is an important technology used in the development and manufacturing of solid oral dosage forms. Since critical quality attributes of the final product greatly depend on the performance of the mixing step, an analysis of such a process using the Discrete Element Method (DEM) is of crucial importance. On one hand, the number of expensive experimental runs can be reduced dramatically. On the other hand, numerical simulations can provide information that is very difficult to obtain experimentally. In order to apply such a simulation technology in product development and to replace experimental runs, an intensive model validation step is required. This paper presents a DEM model of the vertical continuous mixing device termed CMT (continuous mixing technology) and an extensive validation workflow. First, a cohesive contact model was calibrated in two small-scale characterization experiments: a compression test with spring-back and a shear cell test. An improved, quicker calibration procedure utilizing the previously calibrated contact models is presented. The calibration procedure is able to differentiate between the blend properties caused by different API particle sizes in the same formulation. Second, DEM simulations of the CMT were carried out to determine the residence time distribution (RTD) of the material inside the mixer. After that, the predicted RTDs were compared with the results of tracer spike experiments conducted with two blend material properties at two mass throughputs of 15 kg/h and 30 kg/h. Additionally, three hold-up masses (500, 730 and 850 g) and three impeller speeds (400, 440 and 650 rpms) were considered. Finally, both RTD datasets from DEM and tracer experiments were used to predict the damping behavior of incoming feeder fluctuations and the funnel of maximum duration and magnitude of incoming deviations that do not require a control action. The results for both tools in terms of enabling a control strategy (the fluctuation damping and the funnel plot) are in excellent agreement, indicating that DEM simulations are well suited to replace process-scale tracer spike experiments to determine the RTD.


Assuntos
Tecnologia Farmacêutica , Calibragem , Simulação por Computador , Tamanho da Partícula , Pós
3.
J Pharm Sci ; 110(7): 2694-2702, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33607187

RESUMO

Continuous powder mixing technology (CMT) application during continuous direct compression has emerged as a leading technology used in the development and manufacture of solid oral dosage forms. The critical quality attributes of the final product are heavily dependent on the performance of the mixing step as the quality of mixing directly influences the drug product quality attributes. This study investigates the impact of blend material properties (bulk density, API particle size distribution) and process parameters (process throughput, hold up mass and impeller speed) on the mixing performance. Mixing of the blend was characterized using the Residence Time Distribution (RTD) of the process by trending the outlet stream of the mixer using a near-infrared (NIR) probe after the injection of a small mass of tracer at the inlet stream. The outcomes of this study show that the RTDs of the mixer with throughput ranging between 15 and 30 kg/h; impeller speed ranging between 400 and 600 rpm and hold up mass (HUM) ranging between 500 and 850 g can be described by a series of two ideal Continuous Stirred Tank Reactors (CSTRs) with different volumes, and correspondingly, different mean residence times. It is also observed that the mixing is mainly occurring in the lower chamber of the CMT and the normalized RTDs of the mixer are similar across the range of process conditions and material attributes studied. The results also showed that the formulation blend with different API particle sizes and bulk properties, like bulk density and flowability, provide insignificant impact on the mixing performance. The CMT allows independent selection of target set points for HUM, impeller rotational speed and line throughput and it shows great robustness and flexibility for continuous blending in solid oral dose manufacturing.


Assuntos
Tecnologia Farmacêutica , Composição de Medicamentos , Tamanho da Partícula , Pós , Pressão , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA