Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Hand Surg Am ; 43(7): 679.e1-679.e6, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29426604

RESUMO

PURPOSE: "Damage" is an engineering term defining a period between a state of material perfection and the onset of crack initiation. Clinically, it is a loss of fixation due to microstructural breakdown, indirectly measured as a reduction of stiffness of the bone-implant construct, normalized by the cross-sectional area and length of the bone. The purpose of this study was to characterize damage in a cadaver model of extra-articular distal radius fracture with dorsal comminution treated using 2-column volar distal radius plates. METHODS: Ten matched distal radii were randomly divided into 2 groups: group I specimens were treated with a volar distal radius plate with an independent, 2-tiered scaffold design; group II specimens (contralateral limbs) were treated with a volar plate with a single-head design for enhanced ulnar buttressing. Specimens were cyclically loaded to simulate a 6-month postoperative load-bearing period. We report damage after a defined protocol of cyclical loading and load to failure simulating a fall on an outstretched hand. RESULTS: Group II specimens experienced more damage under cyclic loading conditions than group I specimens. Group I specimens were stiffer than group II specimens under load-to-failure conditions. Ultimate force at failure in group I and group II specimens was not different. Specimens failed by plate bending (group I, n = 6/10; group II, n = 2/10) and fracture of the lunate facet (group I, n = 4/10; group II, n = 8/10). CONCLUSIONS: Group I specimens had less screw cutout at the lunate facet than group II specimens under cyclic loading as indicated by lower damage measures and fewer facet fractures during load-to-failure testing. The overall strength of the construct is not affected by plate design. CLINICAL RELEVANCE: Microstructural damage or a loss of fixation due to an overly rigid volar plate design may cause malunion or nonunion of fracture fragments and lead to bone-implant instability.


Assuntos
Placas Ósseas , Fixação Interna de Fraturas/instrumentação , Teste de Materiais , Fraturas do Rádio/cirurgia , Suporte de Carga , Cadáver , Humanos , Desenho de Prótese , Falha de Prótese , Estresse Mecânico
2.
IEEE Syst J ; 15(2): 3069-3080, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35126800

RESUMO

Neurotechnology has traditionally been central to the diagnosis and treatment of neurological disorders. While these devices have initially been utilized in clinical and research settings, recent advancements in neurotechnology have yielded devices that are more portable, user-friendly, and less expensive. These improvements allow laypeople to monitor their brain waves and interface their brains with external devices. Such improvements have led to the rise of wearable neurotechnology that is marketed to the consumer. While many of the consumer devices are marketed for innocuous applications, such as use in video games, there is potential for them to be repurposed for medical use. How do we manage neurotechnologies that skirt the line between medical and consumer applications and what can be done to ensure consumer safety? Here, we characterize neurotechnology based on medical and consumer applications and summarize currently marketed uses of consumer-grade wearable headsets. We lay out concerns that may arise due to the similar claims associated with both medical and consumer devices, the possibility of consumer devices being repurposed for medical uses, and the potential for medical uses of neurotechnology to influence commercial markets related to employment and self-enhancement.

3.
IEEE Open J Eng Med Biol ; 2: 84-90, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35402986

RESUMO

The control and manipulation of various types of end effectors such as powered exoskeletons, prostheses, and 'neural' cursors by brain-machine interface (BMI) systems has been the target of many research projects. A seamless "plug and play" interface between any BMI and end effector is desired, wherein similar user's intent cause similar end effectors to behave identically. This report is based on the outcomes of an IEEE Standards Association Industry Connections working group on End Effectors for Brain-Machine Interfacing that convened to identify and address gaps in the existing standards for BMI-based solutions with a focus on the end-effector component. A roadmap towards standardization of end effectors for BMI systems is discussed by identifying current device standards that are applicable for end effectors. While current standards address basic electrical and mechanical safety, and to some extent, performance requirements, several gaps exist pertaining to unified terminologies, data communication protocols, patient safety and risk mitigation.

4.
Sci Data ; 5: 180133, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29989591

RESUMO

Human locomotion is a complex process that requires the integration of central and peripheral nervous signalling. Understanding the brain's involvement in locomotion is challenging and is traditionally investigated during locomotor imagination or observation. However, stationary imaging methods lack the ability to infer information about the peripheral and central signalling during actual task execution. In this report, we present a dataset containing simultaneously recorded electroencephalography (EEG), lower-limb electromyography (EMG), and full body motion capture recorded from ten able-bodied individuals. The subjects completed an average of twenty trials on an experimental gait course containing level-ground, ramps, and stairs. We recorded 60-channel EEG from the scalp and 4-channel EOG from the face and temples. Surface EMG was recorded from six muscle sites bilaterally on the thigh and shank. The motion capture system consisted of seventeen wireless IMUs, allowing for unconstrained ambulation in the experimental space. In this report, we present the rationale for collecting these data, a detailed explanation of the experimental setup, and a brief validation of the data quality.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia , Eletromiografia , Locomoção , Encéfalo/diagnóstico por imagem , Marcha , Humanos , Músculo Esquelético/fisiologia , Neuroimagem , Caminhada
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1913-1916, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060266

RESUMO

This study investigates if the electrocortical amplitude modulations relative to the mean gait cycle are different across walking conditions (i.e., level-ground (LW), ramp ascent (RA), and stair ascent (SA)). Non-invasive electroencephalography (EEG) signals were recorded and a systematic EEG processing method was implemented to reduce artifacts. Source localization using independent component analysis and k-means clustering revealed the involvement of four clusters in the brain (Left and Right Occipital Lobe, Posterior Parietal Cortex (PPC), and Sensorimotor Area) during the walking tasks. We found that electrocortical amplitude modulations varied across different walking conditions. Specifically, our results showed that the modulations in the PPC shifted to higher frequency bands when the subjects walked in RA and SA conditions. Moreover, we found low γ modulations in the sensorimotor area in LW walking and the modulations in this cluster shifted to lower frequency bands in RA and SA walking. These results are a promising step toward the development of a non-invasive Neural-machine Interface (NMI) for locomotion mode recognition.


Assuntos
Caminhada , Eletroencefalografia , Humanos , Locomoção , Córtex Sensório-Motor
6.
PLoS One ; 12(11): e0188500, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29190704

RESUMO

This study investigated electrocortical dynamics of human walking across different unconstrained walking conditions (i.e., level ground (LW), ramp ascent (RA), and stair ascent (SA)). Non-invasive active-electrode scalp electroencephalography (EEG) signals were recorded and a systematic EEG processing method was implemented to reduce artifacts. Source localization combined with independent component analysis and k-means clustering revealed the involvement of four clusters in the brain during the walking tasks: Left and Right Occipital Lobe (LOL, ROL), Posterior Parietal Cortex (PPC), and Central Sensorimotor Cortex (SMC). Results showed that the changes of spectral power in the PPC and SMC clusters were associated with the level of motor task demands. Specifically, we observed α and ß suppression at the beginning of the gait cycle in both SA and RA walking (relative to LW) in the SMC. Additionally, we observed significant ß rebound (synchronization) at the initial swing phase of the gait cycle, which may be indicative of active cortical signaling involved in maintaining the current locomotor state. An increase of low γ band power in this cluster was also found in SA walking. In the PPC, the low γ band power increased with the level of task demands (from LW to RA and SA). Additionally, our results provide evidence that electrocortical amplitude modulations (relative to average gait cycle) are correlated with the level of difficulty in locomotion tasks. Specifically, the modulations in the PPC shifted to higher frequency bands when the subjects walked in RA and SA conditions. Moreover, low γ modulations in the central sensorimotor area were observed in the LW walking and shifted to lower frequency bands in RA and SA walking. These findings extend our understanding of cortical dynamics of human walking at different level of locomotion task demands and reinforces the growing body of literature supporting a shared-control paradigm between spinal and cortical networks during locomotion.


Assuntos
Caminhada/fisiologia , Eletroencefalografia/métodos , Feminino , Marcha , Humanos , Masculino
7.
Front Hum Neurosci ; 11: 527, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176943

RESUMO

Electroencephalography (EEG) has emerged as a powerful tool for quantitatively studying the brain that enables natural and mobile experiments. Recent advances in EEG have allowed for the use of dry electrodes that do not require a conductive medium between the recording electrode and the scalp. The overall goal of this research was to gain an understanding of the overall usability and signal quality of dry EEG headsets compared to traditional gel-based systems in an unconstrained environment. EEG was used to collect Mobile Brain-body Imaging (MoBI) data from 432 people as they experienced an art exhibit in a public museum. The subjects were instrumented with either one of four dry electrode EEG systems or a conventional gel electrode EEG system. Each of the systems was evaluated based on the signal quality and usability in a real-world setting. First, we describe the various artifacts that were characteristic of each of the systems. Second, we report on each system's usability and their limitations in a mobile setting. Third, to evaluate signal quality for task discrimination and characterization, we employed a data driven clustering approach on the data from 134 of the 432 subjects (those with reliable location tracking information and usable EEG data) to evaluate the power spectral density (PSD) content of the EEG recordings. The experiment consisted of a baseline condition in which the subjects sat quietly facing a white wall for 1 min. Subsequently, the participants were encouraged to explore the exhibit for as long as they wished (piece-viewing). No constraints were placed upon the individual in relation to action, time, or navigation of the exhibit. In this freely-behaving approach, the EEG systems varied in their capacity to record characteristic modulations in the EEG data, with the gel-based system more clearly capturing stereotypical alpha and beta-band modulations.

8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 5729-5732, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28325029

RESUMO

Automated walking intention detection remains a challenge in lower-limb neuroprosthetic systems. Here, we assess the feasibility of extracting motor intent from scalp electroencephalography (EEG). First, we evaluated the corticomuscular coherence between central EEG electrodes (C1, Cz, C2) and muscles of the shank and thigh during walking on level ground and stairs. Second, we trained decoders to predict the linear envelope of the surface electromyogram (EMG). We observed significant EEG-led corticomuscular coupling between electrodes and sEMG (tibialis anterior) in the high delta (3-4 Hz) and low theta (4-5 Hz) frequency bands during level walking, indicating efferent signaling from the cortex to peripheral motor neurons. The coherence was increased between EEG and vastus lateralis and tibialis anterior in the delta band (<; 2 Hz) during stair ascent, indicating a task specific modulation in corticomuscular coupling. However, EMG was the leading signal for biceps femoris and gastrocnemius coherence during stair ascent, possibly representing afferent feedback loops from periphery to the motor cortex. Decoder validation showed that EEG signals contained information about the sEMG patterns during over ground walking, however, the accuracy of the predicted sEMG patterns decreased during the stair condition. Overall, these initial findings support the feasibility of integrating sEMG and EEG into a hybrid decoder for volitional control of lower limb neuroprostheses.


Assuntos
Eletroencefalografia , Caminhada/fisiologia , Adulto , Eletromiografia , Retroalimentação , Humanos , Extremidade Inferior/fisiologia , Masculino , Córtex Motor/fisiologia , Neurônios Motores/citologia , Músculo Esquelético/fisiologia
9.
Front Hum Neurosci ; 9: 626, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635579

RESUMO

The brain response to conceptual art was studied with mobile electroencephalography (EEG) to examine the neural basis of aesthetic experiences. In contrast to most studies of perceptual phenomena, participants were moving and thinking freely as they viewed the exhibit The Boundary of Life is Quietly Crossed by Dario Robleto at the Menil Collection-Houston. The brain activity of over 400 subjects was recorded using dry-electrode and one reference gel-based EEG systems over a period of 3 months. Here, we report initial findings based on the reference system. EEG segments corresponding to each art piece were grouped into one of three classes (complex, moderate, and baseline) based on analysis of a digital image of each piece. Time, frequency, and wavelet features extracted from EEG were used to classify patterns associated with viewing art, and ranked based on their relevance for classification. The maximum classification accuracy was 55% (chance = 33%) with delta and gamma features the most relevant for classification. Functional analysis revealed a significant increase in connection strength in localized brain networks while subjects viewed the most aesthetically pleasing art compared to viewing a blank wall. The direction of signal flow showed early recruitment of broad posterior areas followed by focal anterior activation. Significant differences in the strength of connections were also observed across age and gender. This work provides evidence that EEG, deployed on freely behaving subjects, can detect selective signal flow in neural networks, identify significant differences between subject groups, and report with greater-than-chance accuracy the complexity of a subject's visual percept of aesthetically pleasing art. Our approach, which allows acquisition of neural activity "in action and context," could lead to understanding of how the brain integrates sensory input and its ongoing internal state to produce the phenomenon which we term aesthetic experience.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA