Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 108(44): 18091-6, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22025717

RESUMO

Staphylococcus aureus is a bacterial pathogen known to cause infections in epidemic waves. One such epidemic was caused by a clone known as phage-type 80/81, a penicillin-resistant strain that rose to world prominence in the late 1950s. The molecular underpinnings of the phage-type 80/81 outbreak have remained unknown for decades, nor is it understood why related S. aureus clones became epidemic in hospitals in the early 1990s. To better understand the molecular basis of these epidemics, we sequenced the genomes of eight S. aureus clinical isolates representative of the phage-type 80/81 clone, the Southwest Pacific clone [a community-associated methicillin-resistant S. aureus (MRSA) clone], and contemporary S. aureus clones, all of which are genetically related and belong to the same clonal complex (CC30). Genome sequence analysis revealed that there was coincident divergence of these clones from a recent common ancestor, a finding that resolves controversy about the evolutionary history of the lineage. Notably, we identified nonsynonymous SNPs in genes encoding accessory gene regulator C (agrC) and α-hemolysin (hla)--molecules important for S. aureus virulence--that were present in virtually all contemporary CC30 hospital isolates tested. Compared with the phage-type 80/81 and Southwest Pacific clones, contemporary CC30 hospital isolates had reduced virulence in mouse infection models, the result of SNPs in agrC and hla. We conclude that agr and hla (along with penicillin resistance) were essential for world dominance of phage-type 80/81 S. aureus, whereas key SNPs in contemporary CC30 clones restrict these pathogens to hospital settings in which the host is typically compromised.


Assuntos
Bacteriófagos/classificação , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/virologia , Bacteriófagos/genética , Surtos de Doenças , Genoma Bacteriano , Genoma Viral , Humanos , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Virulência
2.
Proc Natl Acad Sci U S A ; 107(12): 5587-92, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20231457

RESUMO

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is epidemic in the United States, even rivaling HIV/AIDS in its public health impact. The pandemic clone USA300, like other CA-MRSA strains, expresses Panton-Valentine leukocidin (PVL), a pore-forming toxin that targets polymorphonuclear leukocytes (PMNs). PVL is thought to play a key role in the pathogenesis of necrotizing pneumonia, but data from rodent infection models are inconclusive. Rodent PMNs are less susceptible than human PMNs to PVL-induced cytolysis, whereas rabbit PMNs, like those of humans, are highly susceptible to PVL-induced cytolysis. This difference in target cell susceptibility could affect results of experimental models. Therefore, we developed a rabbit model of necrotizing pneumonia to compare the virulence of a USA300 wild-type strain with that of isogenic PVL-deletion mutant and -complemented strains. PVL enhanced the capacity of USA300 to cause severe lung necrosis, pulmonary edema, alveolar hemorrhage, hemoptysis, and death, hallmark clinical features of fatal human necrotizing pneumonia. Purified PVL instilled directly into the lung caused lung inflammation and injury by recruiting and lysing PMNs, which damage the lung by releasing cytotoxic granule contents. These findings provide insights into the mechanism of PVL-induced lung injury and inflammation and demonstrate the utility of the rabbit for studying PVL-mediated pathogenesis.


Assuntos
Lesão Pulmonar Aguda/etiologia , Toxinas Bacterianas/toxicidade , Exotoxinas/toxicidade , Leucocidinas/toxicidade , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Neutrófilos/efeitos dos fármacos , Neutrófilos/fisiologia , Pneumonia Estafilocócica/etiologia , Lesão Pulmonar Aguda/microbiologia , Lesão Pulmonar Aguda/patologia , Animais , Toxinas Bacterianas/genética , Modelos Animais de Doenças , Exotoxinas/genética , Deleção de Genes , Genes Bacterianos , Teste de Complementação Genética , Humanos , Técnicas In Vitro , Leucocidinas/genética , Staphylococcus aureus Resistente à Meticilina/genética , Neutrófilos/patologia , Pneumonia Estafilocócica/microbiologia , Pneumonia Estafilocócica/patologia , Coelhos , Virulência/genética
3.
J Infect Dis ; 206(8): 1185-93, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22872735

RESUMO

BACKGROUND: Staphylococcus aureus produces numerous molecules that facilitate survival in the host. We recently identified a novel S. aureus leukotoxin (leukotoxin GH [LukGH]) using proteomics, but its role in virulence remains unclear. Here we investigated the role of LukGH in vivo. METHODS: We tested cytotoxicity of LukGH toward polymorphonuclear leukocytes (PMNs) from mice, rabbits, monkeys, and humans. LukGH was administered to mice, rabbits, and a cynomolgus monkey by subcutaneous or intradermal injection to assess cytotoxicity or host response in vivo. The effects of LukGH in vivo were compared with those of Panton-Valentine leukocidin (PVL), a well-characterized S. aureus leukotoxin. The contribution of LukGH to S. aureus infection was tested using mouse and rabbit infection models. RESULTS: Susceptibility of PMNs to LukGH was similar between humans and cynomolgus monkeys, and was greater than that of rabbits, which in turn was greater than that of mice. LukGH or PVL caused skin inflammation in rabbits and a monkey, but deletion of neither lukGH nor lukGH and lukS/F-PV reduced severity of USA300 infections in rabbits or mice. Rather, some disease parameters (eg, rabbit abscess size) were increased following infection with a lukGH and lukS/F-PV deletion strain. CONCLUSIONS: Our findings indicate that S. aureus leukotoxins enhance the host inflammatory response and influence the outcome of infection.


Assuntos
Exotoxinas/toxicidade , Inflamação/induzido quimicamente , Staphylococcus aureus/patogenicidade , Fatores de Virulência/toxicidade , Animais , Modelos Animais de Doenças , Exotoxinas/administração & dosagem , Humanos , Inflamação/imunologia , Injeções Intradérmicas , Injeções Subcutâneas , Macaca fascicularis , Masculino , Camundongos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Coelhos , Infecções Estafilocócicas/patologia , Fatores de Virulência/administração & dosagem
4.
J Clin Microbiol ; 50(3): 848-56, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22205797

RESUMO

The impact of Panton-Valentine leukocidin (PVL) on the outcome in Staphylococcus aureus pneumonia is controversial. We genotyped S. aureus isolates from patients with hospital-acquired pneumonia (HAP) enrolled in two registrational multinational clinical trials for the genetic elements carrying pvl and 30 other virulence genes. A total of 287 isolates (173 methicillin-resistant S. aureus [MRSA] and 114 methicillin-susceptible S. aureus [MSSA] isolates) from patients from 127 centers in 34 countries for whom clinical outcomes of cure or failure were available underwent genotyping. Of these, pvl was detected by PCR and its product confirmed in 23 isolates (8.0%) (MRSA, 18/173 isolates [10.4%]; MSSA, 5/114 isolates [4.4%]). The presence of pvl was not associated with a higher risk for clinical failure (4/23 [17.4%] versus 48/264 [18.2%]; P = 1.00) or mortality. These findings persisted after adjustment for multiple potential confounding variables. No significant associations between clinical outcome and (i) presence of any of the 30 other virulence genes tested, (ii) presence of specific bacterial clone, (iii) levels of alpha-hemolysin, or (iv) delta-hemolysin production were identified. This study suggests that neither pvl presence nor in vitro level of alpha-hemolysin production is the primary determinant of outcome among patients with HAP caused by S. aureus.


Assuntos
Toxinas Bacterianas/genética , Infecção Hospitalar/microbiologia , Infecção Hospitalar/patologia , Exotoxinas/genética , Leucocidinas/genética , Pneumonia Estafilocócica/microbiologia , Pneumonia Estafilocócica/patologia , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecção Hospitalar/mortalidade , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Tipagem Molecular , Pneumonia Estafilocócica/mortalidade , Medição de Risco , Staphylococcus aureus/classificação , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Análise de Sobrevida , Resultado do Tratamento
5.
PLoS Pathog ; 6(10): e1001133, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20949069

RESUMO

Staphylococcus epidermidis is a leading nosocomial pathogen. In contrast to its more aggressive relative S. aureus, it causes chronic rather than acute infections. In highly virulent S. aureus, phenol-soluble modulins (PSMs) contribute significantly to immune evasion and aggressive virulence by their strong ability to lyse human neutrophils. Members of the PSM family are also produced by S. epidermidis, but their role in immune evasion is not known. Notably, strong cytolytic capacity of S. epidermidis PSMs would be at odds with the notion that S. epidermidis is a less aggressive pathogen than S. aureus, prompting us to examine the biological activities of S. epidermidis PSMs. Surprisingly, we found that S. epidermidis has the capacity to produce PSMδ, a potent leukocyte toxin, representing the first potent cytolysin to be identified in that pathogen. However, production of strongly cytolytic PSMs was low in S. epidermidis, explaining its low cytolytic potency. Interestingly, the different approaches of S. epidermidis and S. aureus to causing human disease are thus reflected by the adaptation of biological activities within one family of virulence determinants, the PSMs. Nevertheless, S. epidermidis has the capacity to evade neutrophil killing, a phenomenon we found is partly mediated by resistance mechanisms to antimicrobial peptides (AMPs), including the protease SepA, which degrades AMPs, and the AMP sensor/resistance regulator, Aps (GraRS). These findings establish a significant function of SepA and Aps in S. epidermidis immune evasion and explain in part why S. epidermidis may evade elimination by innate host defense despite the lack of cytolytic toxin expression. Our study shows that the strategy of S. epidermidis to evade elimination by human neutrophils is characterized by a passive defense approach and provides molecular evidence to support the notion that S. epidermidis is a less aggressive pathogen than S. aureus.


Assuntos
Evasão da Resposta Imune/fisiologia , Neutrófilos/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus epidermidis/imunologia , Staphylococcus epidermidis/patogenicidade , Sequência de Aminoácidos , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Hemólise/efeitos dos fármacos , Hemólise/genética , Humanos , Evasão da Resposta Imune/genética , Imunidade Celular/fisiologia , Dados de Sequência Molecular , Neutrófilos/fisiologia , Filogenia , Homologia de Sequência de Aminoácidos , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo
6.
Proc Natl Acad Sci U S A ; 106(14): 5883-8, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19293374

RESUMO

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has recently emerged worldwide. The United States, in particular, is experiencing a serious epidemic of CA-MRSA that is almost entirely caused by an extraordinarily infectious strain named USA300. However, the molecular determinants underlying the pathogenic success of CA-MRSA are mostly unknown. To gain insight into the evolution of the exceptional potential of USA300 to cause disease, we compared the phylogeny and virulence of USA300 with that of closely related MRSA clones. We discovered that the sublineage from which USA300 evolved is characterized by a phenotype of high virulence that is clearly distinct from other MRSA strains. Namely, USA300 and its progenitor, USA500, had high virulence in animal infection models and the capacity to evade innate host defense mechanisms. Furthermore, our results indicate that increased virulence in the USA300/USA500 sublineage is attributable to differential expression of core genome-encoded virulence determinants, such as phenol-soluble modulins and alpha-toxin. Notably, the fact that the virulence phenotype of USA300 was already established in its progenitor indicates that acquisition of mobile genetic elements has played a limited role in the evolution of USA300 virulence and points to a possibly different role of those elements. Thus, our results highlight the importance of differential gene expression in the evolution of USA300 virulence. This finding calls for a profound revision of our notion about CA-MRSA pathogenesis at the molecular level and has important implications for design of therapeutics directed against CA-MRSA.


Assuntos
Surtos de Doenças , Evolução Molecular , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Filogenia , Virulência/genética , Animais , Regulação Bacteriana da Expressão Gênica , Humanos , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/genética , Estados Unidos
7.
J Infect Dis ; 204(6): 937-41, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21849291

RESUMO

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections are frequently associated with strains harboring genes encoding Panton-Valentine leukocidin (PVL). The role of PVL in the success of the epidemic CA-MRSA strain USA300 remains unknown. Here we developed a skin and soft tissue infection model in rabbits to test the hypothesis that PVL contributes to USA300 pathogenesis and compare it with well-established virulence determinants: alpha-hemolysin (Hla), phenol-soluble modulin-alpha peptides (PSMα), and accessory gene regulator (Agr). The data indicate that Hla, PSMα, and Agr contribute to the pathogenesis of USA300 skin infections in rabbits, whereas a role for PVL could not be detected.


Assuntos
Staphylococcus aureus Resistente à Meticilina/patogenicidade , Infecções dos Tecidos Moles/microbiologia , Infecções dos Tecidos Moles/patologia , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/patologia , Fatores de Virulência/metabolismo , Abscesso/microbiologia , Abscesso/patologia , Animais , Carga Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Modelos Animais de Doenças , Exotoxinas/genética , Exotoxinas/metabolismo , Feminino , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Histocitoquímica , Leucocidinas/genética , Leucocidinas/metabolismo , Microscopia , Coelhos , Pele/microbiologia , Pele/patologia , Transativadores/genética , Transativadores/metabolismo , Virulência , Fatores de Virulência/genética
8.
Proc Natl Acad Sci U S A ; 105(4): 1327-32, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18216255

RESUMO

Emerging and re-emerging infectious diseases, especially those caused by drug-resistant bacteria, are a major problem worldwide. Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) appeared rapidly and unexpectedly in the United States, resulting in an epidemic caused primarily by isolates classified as USA300. The evolutionary and molecular underpinnings of this epidemic are poorly understood. Specifically, it is unclear whether there has been clonal emergence of USA300 isolates or evolutionary convergence toward a hypervirulent phenotype resulting in the independent appearance of similar organisms. To definitively resolve this issue and understand the phylogeny of USA300 isolates, we used comparative whole-genome sequencing to analyze 10 USA300 patient isolates from eight states in diverse geographic regions of the United States and multiple types of human infection. Eight of 10 isolates analyzed had very few single nucleotide polymorphisms (SNPs) and thus were closely related, indicating recent diversification rather than convergence. Unexpectedly, 2 of the clonal isolates had significantly reduced mortality in a mouse sepsis model compared with the reference isolate (P = 0.0002), providing strong support to the idea that minimal genetic change in the bacterial genome can have profound effects on virulence. Taken together, our results demonstrate that there has been recent clonal expansion and diversification of a subset of isolates classified as USA300. The findings add an evolutionary dimension to the epidemiology and emergence of USA300 and suggest a similar mechanism for the pandemic occurrence and spread of penicillin-resistant S. aureus (known as phage-type 80/81 S. aureus) in the 1950s.


Assuntos
Infecções Comunitárias Adquiridas/microbiologia , Surtos de Doenças , Farmacorresistência Bacteriana Múltipla , Variação Genética , Resistência a Meticilina , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Animais , Infecções Comunitárias Adquiridas/tratamento farmacológico , Infecções Comunitárias Adquiridas/epidemiologia , Modelos Animais de Doenças , Genoma Bacteriano , Humanos , Resistência a Meticilina/genética , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/classificação , Staphylococcus aureus/isolamento & purificação , Estados Unidos , Virulência
9.
J Infect Dis ; 202(7): 1050-8, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20726702

RESUMO

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections are predominantly those affecting skin and soft tissues. Although progress has been made, our knowledge of the molecules that contribute to the pathogenesis of CA-MRSA skin infections is incomplete. We tested the hypothesis that alpha-hemolysin (Hla) contributes to the severity of USA300 skin infections in mice and determined whether vaccination against Hla reduces disease severity. Isogenic hla-negative (Deltahla) strains caused skin lesions in a mouse infection model that were significantly smaller than those caused by wild-type USA300 and Newman strains. Moreover, infection due to wild-type strains produced dermonecrotic skin lesions, whereas there was little or no dermonecrosis in mice infected with Deltahla strains. Passive immunization with Hla-specific antisera or active immunization with a nontoxigenic form of Hla significantly reduced the size of skin lesions caused by USA300 and prevented dermonecrosis. We conclude that Hla is a potential target for therapeutics or vaccines designed to moderate severe S. aureus skin infections.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Proteínas Hemolisinas/antagonistas & inibidores , Imunização Passiva/métodos , Imunização/métodos , Infecções Cutâneas Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Modelos Animais de Doenças , Feminino , Deleção de Genes , Proteínas Hemolisinas/deficiência , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Pele/patologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade
10.
J Clin Microbiol ; 48(12): 4504-11, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20943864

RESUMO

A community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strain known as pulsed-field type USA300 (USA300) is epidemic in the United States. Previous comparative whole-genome sequencing studies demonstrated that there has been recent clonal emergence of a subset of USA300 isolates, which comprise the epidemic clone. Although the core genomes of these isolates are closely related, the level of diversity among USA300 plasmids was not resolved. Inasmuch as these plasmids might contribute to significant gene diversity among otherwise closely related USA300 isolates, we performed de novo sequencing of endogenous plasmids from 10 previously characterized USA300 clinical isolates obtained from different geographic locations in the United States. All isolates tested contained small (2- to 3-kb) and/or large (27- to 30-kb) plasmids. The large plasmids encoded heavy metal and/or antimicrobial resistance elements, including those that confer resistance to cadmium, bacitracin, macrolides, penicillin, kanamycin, and streptothricin, although all isolates were sensitive to minocycline, doxycycline, trimethoprim-sulfamethoxazole, vancomycin, teicoplanin, and linezolid. One of the USA300 isolates contained an archaic plasmid that encoded staphylococcal enterotoxins R, J, and P. Notably, the large plasmids (27 to 28 kb) from 8 USA300 isolates--those that comprise the epidemic USA300 clone--were virtually identical (99% identity) and similar to a large plasmid from strain USA300_TCH1516 (a previously sequenced USA300 strain from Houston, TX). These plasmids are largely divergent from the 37-kb plasmid of FPR3757, the first sequenced USA300 strain. The high level of plasmid sequence identity among the majority of closely related USA300 isolates is consistent with the recent clonal emergence hypothesis for USA300.


Assuntos
DNA Bacteriano/genética , Variação Genética , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/genética , Plasmídeos , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Análise por Conglomerados , DNA Bacteriano/química , Farmacorresistência Bacteriana Múltipla , Humanos , Metais Pesados/toxicidade , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Estados Unidos
11.
PLoS One ; 11(6): e0158293, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27336691

RESUMO

Staphylococcus aureus produces numerous factors that facilitate survival in the human host. S. aureus coagulase (Coa) and von Willebrand factor-binding protein (vWbp) are known to clot plasma through activation of prothrombin and conversion of fibrinogen to fibrin. In addition, S. aureus clumping factor A (ClfA) binds fibrinogen and contributes to platelet aggregation via a fibrinogen- or complement-dependent mechanism. Here, we evaluated the contribution of Coa, vWbp and ClfA to S. aureus pathogenesis in a rabbit model of skin and soft tissue infection. Compared to skin abscesses caused by the Newman wild-type strain, those caused by isogenic coa, vwb, or clfA deletion strains, or a strain deficient in coa and vwb, were significantly smaller following subcutaneous inoculation in rabbits. Unexpectedly, we found that fibrin deposition and abscess capsule formation appear to be independent of S. aureus coagulase activity in the rabbit infection model. Similarities notwithstanding, S. aureus strains deficient in coa and vwb elicited reduced levels of several proinflammatory molecules in human blood in vitro. Although a specific mechanism remains to be determined, we conclude that S. aureus Coa, vWbp and ClfA contribute to abscess formation in rabbits.


Assuntos
Abscesso/microbiologia , Coagulase/metabolismo , Infecções dos Tecidos Moles/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Abscesso/patologia , Animais , Proteínas de Bactérias/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Coelhos , Infecções dos Tecidos Moles/patologia , Infecções Cutâneas Estafilocócicas/patologia
12.
J Leukoc Biol ; 73(2): 315-22, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12554809

RESUMO

Human polymorphonuclear leukocytes (PMNs) are an essential part of innate immunity and contribute significantly to inflammation. Although much is understood about the inflammatory response, the molecular basis for termination of inflammation in humans is largely undefined. We used human oligonucleotide microarrays to identify genes differentially regulated during the onset of apoptosis occurring after PMN phagocytosis. Genes encoding proteins that regulate cell metabolism and vesicle trafficking comprised 198 (98 genes induced, 100 genes repressed) of 867 differentially expressed genes. We discovered that complex cellular pathways involving glutathione and thioredoxin detoxification systems, heme catabolism, ubiquitin-proteasome degradation, purine nucleotide metabolism, and nuclear import were regulated at the level of gene expression during the initial stages of PMN apoptosis. Eleven genes encoding key regulators of glycolysis, the hexose monophosphate shunt, the glycerol-phosphate shuttle, and oxidative phosphorylation were induced. Increased levels of cellular reduced glutathione and gamma-glutamyltransferase and glycolytic activity confirmed that several of these metabolic pathways were up-regulated. In contrast, seven genes encoding critical enzymes involved in fatty acid beta-oxidation, which can generate toxic lipid peroxides, were down-regulated. Our results indicate that energy metabolism and oxidative stress-response pathways are gene-regulated during PMN apoptosis. We propose that changes in PMN gene expression leading to programmed cell death are part of an apoptosis-differentiation program, a final stage of transcriptionally regulated PMN maturation that is accelerated significantly by phagocytosis. These findings provide new insight into the molecular events that contribute to the resolution of inflammation in humans.


Assuntos
Apoptose , Perfilação da Expressão Gênica , Inflamação/etiologia , Neutrófilos/fisiologia , Metabolismo Energético , Glicólise , Humanos , Inativação Metabólica , Inflamação/imunologia , Ativação de Neutrófilo , Oxirredução , Fagocitose
13.
Methods Mol Biol ; 1031: 109-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23824894

RESUMO

Bacterial skin and soft tissue infections are abundant worldwide and many are caused by Staphylococcus aureus. Indeed, S. aureus is the leading cause of skin and soft tissue infections in the USA. Here, we describe a mouse model of skin and soft tissue infection induced by subcutaneous inoculation of S. aureus. This animal model can be used to investigate a number of factors related to the pathogenesis of skin and soft tissue infections, including strain virulence and the contribution of specific bacterial molecules to disease, and it can be employed to test the potential effectiveness of antibiotic therapies or vaccine candidates.


Assuntos
Pele/patologia , Infecções Cutâneas Estafilocócicas/patologia , Staphylococcus aureus/patogenicidade , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia
14.
Virulence ; 4(8): 707-15, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24104465

RESUMO

Staphylococcus aureus community-acquired pneumonia is often associated with influenza or an influenza-like syndrome. Morbidity and mortality due to methicillin-resistant S. aureus (MRSA) or influenza and pneumonia, which includes bacterial co-infection, are among the top causes of death by infectious diseases in the United States. We developed a non-lethal influenza A virus (IAV) (H3N2)/S. aureus co-infection model in cynomolgus macaques (Macaca fascicularis) to test the hypothesis that seasonal IAV infection predisposes non-human primates to severe S. aureus pneumonia. Infection and disease progression were monitored by clinical assessment of animal health; analysis of blood chemistry, nasal swabs, and X-rays; and gross pathology and histopathology of lungs from infected animals. Seasonal IAV infection in healthy cynomolgus macaques caused mild pneumonia, but unexpectedly, did not predispose these animals to subsequent severe infection with the community-associated MRSA clone USA300. We conclude that in our co-infection model, seasonal IAV infection alone is not sufficient to promote severe S. aureus pneumonia in otherwise healthy non-human primates. The implication of these findings is that comorbidity factors in addition to IAV infection are required to predispose individuals to secondary S. aureus pneumonia.


Assuntos
Coinfecção/microbiologia , Coinfecção/virologia , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Interações Microbianas , Infecções por Orthomyxoviridae/complicações , Pneumonia Estafilocócica/complicações , Staphylococcus aureus/crescimento & desenvolvimento , Animais , Coinfecção/patologia , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/patologia , Macaca fascicularis , Masculino , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Pneumonia Estafilocócica/microbiologia , Pneumonia Estafilocócica/patologia
15.
J Leukoc Biol ; 92(2): 361-74, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22581932

RESUMO

CA-MRSA infections are often caused by strains encoding PVL, which can cause lysis of PMNs and other myeloid cells in vitro, a function considered widely as the primary means by which PVL might contribute to disease. However, at sublytic concentrations, PVL can function as a PMN agonist. To better understand this phenomenon, we investigated the ability of PVL to alter human PMN function. PMNs exposed to PVL had enhanced capacity to produce O(2)(-) in response to fMLF, but unlike priming by LPS, this response did not require TLR signal transduction. On the other hand, there was subcellular redistribution of NADPH oxidase components in PMNs following exposure of these cells to PVL--a finding consistent with priming. Importantly, PMNs primed with PVL had an enhanced ability to bind/ingest and kill Staphylococcus aureus. Priming of PMNs with other agonists, such as IL-8 or GM-CSF, altered the ability of PVL to cause formation of pores in the plasma membranes of these cells. Microarray analysis revealed significant changes in the human PMN transcriptome following exposure to PVL, including up-regulation of molecules that regulate the inflammatory response. Consistent with the microarray data, mediators of the inflammatory response were released from PMNs after stimulation with PVL. We conclude that exposure of human PMNs to sublytic concentrations of PVL elicits a proinflammatory response that is regulated in part at the level of gene expression. We propose that PVL-mediated priming of PMNs enhances the host innate immune response.


Assuntos
Exotoxinas/fisiologia , Leucocidinas/fisiologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Infecções Estafilocócicas/imunologia , Toxinas Bacterianas/metabolismo , Células Cultivadas , Exotoxinas/metabolismo , Humanos , Leucocidinas/metabolismo , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Neutrófilos/efeitos dos fármacos , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia
16.
PLoS One ; 6(4): e18617, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21525981

RESUMO

Staphylococcus aureus is a leading cause of bloodstream infections worldwide. In the United States, many of these infections are caused by a strain known as USA300. Although progress has been made, our understanding of the S. aureus molecules that promote survival in human blood and ultimately facilitate metastases is incomplete. To that end, we analyzed the USA300 transcriptome during culture in human blood, human serum, and trypticase soy broth (TSB), a standard laboratory culture media. Notably, genes encoding several cytolytic toxins were up-regulated in human blood over time, and hlgA, hlgB, and hlgC (encoding gamma-hemolysin subunits HlgA, HlgB, and HlgC) were among the most highly up-regulated genes at all time points. Compared to culture supernatants from a wild-type USA300 strain (LAC), those derived from an isogenic hlgABC-deletion strain (LACΔhlgABC) had significantly reduced capacity to form pores in human neutrophils and ultimately cause neutrophil lysis. Moreover, LACΔhlgABC had modestly reduced ability to cause mortality in a mouse bacteremia model. On the other hand, wild-type and LACΔhlgABC strains caused virtually identical abscesses in a mouse skin infection model, and bacterial survival and neutrophil lysis after phagocytosis in vitro was similar between these strains. Comparison of the cytolytic capacity of culture supernatants from wild-type and isogenic deletion strains lacking hlgABC, lukS/F-PV (encoding PVL), and/or lukDE revealed functional redundancy among two-component leukotoxins in vitro. These findings, along with a requirement of specific growth conditions for leukotoxin expression, may explain the apparent limited contribution of any single two-component leukotoxin to USA300 immune evasion and virulence.


Assuntos
Regulação Bacteriana da Expressão Gênica , Soro/microbiologia , Staphylococcus aureus/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Permeabilidade da Membrana Celular , Modelos Animais de Doenças , Exotoxinas/genética , Exotoxinas/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Camundongos , Viabilidade Microbiana , Neutrófilos/citologia , Neutrófilos/microbiologia , Porosidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Virulência/genética
17.
Microbes Infect ; 12(6): 446-56, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20172045

RESUMO

Panton-Valentine leukocidin (PVL) is a cytolytic toxin associated with severe community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections. However, the relative contribution of PVL to host cell lysis during CA-MRSA infection remains unknown. Here we investigated the relative contribution of PVL to human polymorphonuclear leukocyte (PMN) plasma membrane permeability and lysis in vitro by using culture supernatants from wild-type and isogenic lukS/F-PV negative (Deltapvl) USA300 and USA400 strains. Using S. aureus culture conditions that favor selective high production of PVL (CCY medium), there was on average more PMN plasma membrane permeability and cell lysis caused by supernatants derived from wild-type strains compared with those from Deltapvl strains. Unexpectedly, plasma membrane permeability did not necessarily correlate with ultimate cell lysis. Moreover, the level of pore formation caused by culture supernatants varied dramatically (e.g., range was 0.32-99.09% for wild-type USA300 supernatants at 30 min) and was not attributable to differences in PMN susceptibility to PVL among human blood donors. We conclude that PMN pore formation assays utilizing S. aureus culture supernatants have limited ability to estimate the relative contribution of PVL to pathogenesis (or cytolysis in vitro or in vivo), especially when assayed using culture media that promote selective high production of PVL.


Assuntos
Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Leucocidinas/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Neutrófilos/metabolismo , Análise de Variância , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Células Cultivadas , Meios de Cultura , Interações Hospedeiro-Patógeno , Humanos , Leucocidinas/genética , Neutrófilos/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
J Innate Immun ; 2(6): 560-75, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20587998

RESUMO

Mechanisms underlying the enhanced virulence phenotype of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) are incompletely defined, but presumably include evasion of killing by human polymorphonuclear leukocytes (PMNs or neutrophils). To better understand this phenomenon, we investigated the basis of rapid PMN lysis after phagocytosis of USA300, a prominent CA-MRSA strain. Survival of USA300 clinical isolates after phagocytosis ultimately resulted in neutrophil lysis. PMNs containing ingested USA300 underwent morphological changes consistent with apoptosis, but lysed rapidly thereafter (within 6 h), whereas cells undergoing FAS-mediated apoptosis or phagocytosis-induced cell death remained intact. Phagosome membranes remained intact until the point of PMN destruction, suggesting lysis was not caused by escape of S. aureus from phagosomes or the cytolytic action of pore-forming toxins. Microarray analysis of the PMN transcriptome after phagocytosis of representative community-associated S. aureus and healthcare-associated MRSA strains revealed changes unique to community-associated S. aureus strains, such as upregulation of transcripts involved in regulation of calcium homeostasis. Collectively, the data suggest that neutrophil destruction after phagocytosis of USA300 is in part a form of programmed necrosis rather than direct lysis by S. aureus pore-forming toxins. We propose that the ability of CA-MRSA strains to induce programmed necrosis of neutrophils is a component of enhanced virulence.


Assuntos
Infecções Comunitárias Adquiridas/imunologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Neutrófilos/metabolismo , Fagossomos/ultraestrutura , Infecções Estafilocócicas/imunologia , Apoptose/genética , Regulação da Expressão Gênica/imunologia , Humanos , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Análise em Microsséries , Microscopia Eletrônica de Transmissão , Necrose/genética , Neutrófilos/imunologia , Neutrófilos/microbiologia , Neutrófilos/patologia , Fagocitose , Especificidade da Espécie , Infecções Estafilocócicas/microbiologia , Fatores de Virulência
19.
J Infect Dis ; 199(11): 1698-706, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19374556

RESUMO

Methicillin-resistant Staphylococcus aureus is problematic both in hospitals and in the community. Currently, we have limited understanding of mechanisms of innate immune evasion used by S. aureus. To that end, we created an isogenic deletion mutant in strain MW2 (USA400) of the saeR/S 2-component gene regulatory system and studied its role in mouse models of pathogenesis and during human neutrophil interaction. In this study, we demonstrate that saeR/S plays a distinct role in S. aureus pathogenesis and is vital for virulence of MW2 in a mouse model of sepsis. Moreover, deletion of saeR/S significantly impaired survival of MW2 in human blood and after neutrophil phagocytosis. Microarray analysis revealed that SaeR/S of MW2 influences expression of a wide variety of genes with diverse biological functions. These data provide new insight into how virulence is regulated in S. aureus and associates a specific staphylococcal gene-regulatory system with invasive staphylococcal disease.


Assuntos
Proteínas de Bactérias/genética , Imunidade Inata/genética , Proteínas Quinases/genética , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Animais , Modelos Animais de Doenças , Camundongos , Mutagênese , Neutrófilos/microbiologia , Neutrófilos/fisiologia , Fagocitose , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sepse/microbiologia , Deleção de Sequência , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/patogenicidade , Fatores de Transcrição , Virulência
20.
J Immunol ; 180(1): 500-9, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18097052

RESUMO

In recent years, there has been a dramatic increase in the incidence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections. MW2 (pulsed-field type USA400), the prototype CA-MRSA strain, is highly virulent and has enhanced ability to evade killing by neutrophils. Although progress has been made, the molecular basis for enhanced virulence of CA-MRSA remains incompletely defined. To that end, we studied resistance of MW2 to key microbicides of human neutrophils. Hydrogen peroxide (H2O2), hypochlorous acid, and azurophilic granule proteins had significant bacteriostatic but limited staphylocidal activity toward MW2 under the conditions tested. An MW2-specific microarray revealed common changes in S. aureus gene expression following exposure to each microbicide, such as up-regulation of transcripts involved in gene regulation (e.g., saeRS and kdpDE) and stress response. Azurophilic granule proteins elicited the greatest number of changes in MW2 transcripts, including up-regulation of mRNAs encoding multiple toxins and hemolysins (e.g., hlgA, hlgB, hlgC, hla, lukS-PV, lukF-PV, sec4, and set17-26). Notably, H2O2 triggered up-regulation of transcripts related to heme/iron uptake (e.g., isdA, isdB, and isdCDEFsrtBisdG), and an isogenic isdAB-negative strain of MW2 had increased susceptibility to H2O2 (p<0.001) and human neutrophils (p<0.05) compared with the wild-type parental strain. These findings reveal a S. aureus survival response wherein Iron-regulated surface determinant (Isd) proteins are important for resistance to innate host defense. Collectively, the data provide an enhanced view of the mechanisms used by S. aureus to circumvent destruction by the innate immune system.


Assuntos
Infecções Comunitárias Adquiridas/imunologia , Infecções Comunitárias Adquiridas/microbiologia , Resistência a Meticilina , Neutrófilos/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antígenos de Bactérias/genética , Toxinas Bacterianas/genética , Proteínas de Transporte de Cátions/genética , Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Proteínas Hemolisinas/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Ácido Hipocloroso/farmacologia , Imunidade Inata , Ferro , Análise de Sequência com Séries de Oligonucleotídeos , Staphylococcus aureus/efeitos dos fármacos , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA