Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Epilepsia ; 53(11): e189-92, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22967005

RESUMO

Interictal electroencephalography (EEG) has clinically meaningful limitations in its sensitivity and specificity in the diagnosis of epilepsy because of its dependence on the occurrence of epileptiform discharges. We have developed a computer-aided diagnostic (CAD) tool that operates on the absolute spectral energy of the routine EEG and has both substantially higher sensitivity and negative predictive value than the identification of interictal epileptiform discharges. Our approach used a multilayer perceptron to classify 156 patients admitted for video-EEG monitoring. The patient population was diagnostically diverse; 87 were diagnosed with either generalized or focal seizures. The remainder of the patients were diagnosed with nonepileptic seizures. The sensitivity was 92% (95% confidence interval [CI] 85-97%) and the negative predictive value was 82% (95% CI 67-92%). We discuss how these findings suggest that this CAD can be used to supplement event-based analysis by trained epileptologists.


Assuntos
Diagnóstico por Computador/métodos , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Humanos
2.
Artigo em Inglês | MEDLINE | ID: mdl-25241830

RESUMO

Developing EEG-based computer aided diagnostic (CAD) tools would allow identification of epilepsy in individuals who have experienced possible seizures, yet such an algorithm requires efficient identification of meaningful features out of potentially more than 35,000 features of EEG activity. Mutual information can be used to identify a subset of minimally-redundant and maximally relevant (mRMR) features but requires a priori selection of two parameters: the number of features of interest and the number of quantization levels into which the continuous features are binned. Here we characterize the variance of cross-validation accuracy with respect to changes in these parameters for four classes of machine learning (ML) algorithms. This assesses the efficiency of combining mRMR with each of these algorithms by assessing when the variance of cross-validation accuracy is minimized and demonstrates how naive parameter selection may artificially depress accuracy. Our results can be used to improve the understanding of how feature selection interacts with four classes of ML algorithms and provide guidance for better a priori parameter selection in situations where an overwhelming number of redundant, noisy features are available for classification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA