RESUMO
Template-directed assembly has been shown to yield a broad diversity of highly ordered mesostructures1,2, which in a few cases exhibit symmetries not present in the native material3-5. However, this technique has not yet been applied to eutectic materials, which underpin many modern technologies ranging from high-performance turbine blades to solder alloys. Here we use directional solidification of a simple AgCl-KCl lamellar eutectic material within a pillar template to show that interactions of the material with the template lead to the emergence of a set of microstructures that are distinct from the eutectic's native lamellar structure and the template's hexagonal lattice structure. By modifying the solidification rate of this material-template system, trefoil, quatrefoil, cinquefoil and hexafoil mesostructures with submicrometre-size features are realized. Phase-field simulations suggest that these mesostructures appear owing to constraints imposed on diffusion by the hexagonally arrayed pillar template. We note that the trefoil and hexafoil patterns resemble Archimedean honeycomb and square-hexagonal-dodecagonal lattices6, respectively. We also find that by using monolayer colloidal crystals as templates, a variety of eutectic mesostructures including trefoil and hexafoil are observed, the former resembling the Archimedean kagome lattice. Potential emerging applications for the structures provided by templated eutectics include non-reciprocal metasurfaces7, magnetic spin-ice systems8,9, and micro- and nano-lattices with enhanced mechanical properties10,11.
RESUMO
Ion transport is essential to energy storage, cellular signalling and desalination. Polymers have been explored for decades as solid-state electrolytes by either adding salt to polar polymers or tethering ions to the backbone to create less flammable and more robust systems. New design paradigms are needed to advance the performance of solid polymer electrolytes beyond conventional systems. Here the role of a helical secondary structure is shown to greatly enhance the conductivity of solvent-free polymer electrolytes using cationic polypeptides with a mobile anion. Longer helices lead to higher conductivity, and random coil peptides show substantially lower conductivity. The macrodipole of the helix increases with peptide length, leading to larger dielectric constants. The hydrogen bonding of the helix also imparts thermal and electrochemical stability, while allowing for facile dissolution back to monomer in acid. Peptide polymer electrolytes present a promising platform for the design of next-generation ion-transporting materials.
RESUMO
Electrochemical phase transformation in ion-insertion crystalline electrodes is accompanied by compositional and structural changes, including the microstructural development of oriented phase domains. Previous studies have identified prevailingly transformation heterogeneities associated with diffusion- or reaction-limited mechanisms. In comparison, transformation-induced domains and their microstructure resulting from the loss of symmetry elements remain unexplored, despite their general importance in alloys and ceramics. Here, we map the formation of oriented phase domains and the development of strain gradient quantitatively during the electrochemical ion-insertion process. A collocated four-dimensional scanning transmission electron microscopy and electron energy loss spectroscopy approach, coupled with data mining, enables the study. Results show that in our model system of cubic spinel MnO2 nanoparticles their phase transformation upon Mg2+ insertion leads to the formation of domains of similar chemical identity but different orientations at nanometre length scale, following the nucleation, growth and coalescence process. Electrolytes have a substantial impact on the transformation microstructure ('island' versus 'archipelago'). Further, large strain gradients build up from the development of phase domains across their boundaries with high impact on the chemical diffusion coefficient by a factor of ten or more. Our findings thus provide critical insights into the microstructure formation mechanism and its impact on the ion-insertion process, suggesting new rules of transformation structure control for energy storage materials.
RESUMO
The coupled transport of charge and heat provide fundamental insights into the microscopic thermodynamics and kinetics of materials. We describe a sensitive ac differential resistance bridge that enables measurements of the temperature difference on two sides of a coin cell with a resolution of better than 10 µK. We use this temperature difference metrology to determine the ionic Peltier coefficients of symmetric Li-ion electrochemical cells as a function of Li salt concentration, solvent composition, electrode material, and temperature. The Peltier coefficients Π are negative, i.e., heat flows in the direction opposite to the drift of Li ions in the applied electric field, large, -Π > 30 kJ mol-1, and increase with increasing temperature at T > 300 K. The Peltier coefficient is approximately constant on time scales that span the characteristic time for mass diffusion across the thickness of the electrolyte, suggesting that heat of transport plays a minor role in comparison to the changes in partial molar entropy of Li at the interface between the electrode and electrolyte. Our work demonstrates a new platform for studying the non-equilibrium thermodynamics of electrochemical cells and provides a window into the transport properties of electrochemical materials through measurements of temperature differences and heat currents that complement traditional measurements of voltages and charge currents.
RESUMO
We introduce an intermediate-temperature (350 °C) dry molten sodium hydroxide-mediated binder-free electrodeposition process to grow the previously electrochemically inaccessible air- and moisture-sensitive layered sodium transition metal oxides, NaxMO2 (M = Co, Mn, Ni, Fe), in both thin and thick film form, compounds which are conventionally synthesized in powder form by solid-state reactions at temperatures ≥700 °C. As a key motivation for this work, several of these oxides are of interest as cathode materials for emerging sodium-ion-based electrochemical energy storage systems. Despite the low synthesis temperature and short reaction times, our electrodeposited oxides retain the key structural and electrochemical performance observed in high-temperature bulk synthesized materials. We demonstrate that tens of micrometers thick >75% dense NaxCoO2 and NaxMnO2 can be deposited in under 1 h. When used as cathodes for sodium-ion batteries, these materials exhibit near theoretical gravimetric capacities, chemical diffusion coefficients of Na+ ions (â¼10-12 cm2â s-1), and high reversible areal capacities in the range â¼0.25 to 0.76 mAâ hâ cm-2, values significantly higher than those reported for binder-free sodium cathodes deposited by other techniques. The method described here resolves longstanding intrinsic challenges associated with traditional aqueous solution-based electrodeposition of ceramic oxides and opens a general solution chemistry approach for electrochemical processing of hitherto unexplored air- and moisture-sensitive high valent multinary structures with extended frameworks.
RESUMO
Soft microfluidic systems that capture, store, and perform biomarker analysis of microliter volumes of sweat, in situ, as it emerges from the surface of the skin, represent an emerging class of wearable technology with powerful capabilities that complement those of traditional biophysical sensing devices. Recent work establishes applications in the real-time characterization of sweat dynamics and sweat chemistry in the context of sports performance and healthcare diagnostics. This paper presents a collection of advances in biochemical sensors and microfluidic designs that support multimodal operation in the monitoring of physiological signatures directly correlated to physical and mental stresses. These wireless, battery-free, skin-interfaced devices combine lateral flow immunoassays for cortisol, fluorometric assays for glucose and ascorbic acid (vitamin C), and digital tracking of skin galvanic responses. Systematic benchtop evaluations and field studies on human subjects highlight the key features of this platform for the continuous, noninvasive monitoring of biochemical and biophysical correlates of the stress state.
Assuntos
Técnicas Biossensoriais/instrumentação , Microfluídica/métodos , Suor/química , Espectroscopia Dielétrica/instrumentação , Espectroscopia Dielétrica/métodos , Impedância Elétrica , Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Fluorometria , Humanos , Imunoensaio , Dispositivos Lab-On-A-Chip , Pele/química , Dispositivos Eletrônicos VestíveisRESUMO
Interfaces have crucial, but still poorly understood, roles in the performance of secondary solid-state batteries. Here, using crystallographically oriented and highly faceted thick cathodes, we directly assess the impact of cathode crystallography and morphology on the long-term performance of solid-state batteries. The controlled interface crystallography, area and microstructure of these cathodes enables an understanding of interface instabilities unknown (hidden) in conventional thin-film and composite solid-state electrodes. A generic and direct correlation between cell performance and interface stability is revealed for a variety of both lithium- and sodium-based cathodes and solid electrolytes. Our findings highlight that minimizing interfacial area, rather than its expansion as is the case in conventional composite cathodes, is key to both understanding the nature of interface instabilities and improving cell performance. Our findings also point to the use of dense and thick cathodes as a way of increasing the energy density and stability of solid-state batteries.
RESUMO
Aqueous polymer colloids known as latexes are widely used in coating applications. Multicomponent latexes comprised of two incompatible polymeric species organized into a core-shell particle morphology are a promising system for self-stratifying coatings that spontaneously partition into multiple layers, thereby yielding complex structured coatings requiring only a single application step. Developing new materials for self-stratifying coatings requires a clear understanding of the thermodynamic and kinetic properties governing phase separation and polymeric species transport. In this work, we study phase separation and self-stratification in polymer films based on multicomponent acrylic (shell) and acrylic-silicone (core) latex particles. Our results show that the molecular weight of the shell polymer and heat aging conditions of the film critically determine the underlying transport phenomena, which ultimately controls phase separation in the film. Unentangled shell polymers result in efficient phase separation within hours with heat aging at reasonable temperatures, whereas entangled shell polymers effectively inhibit phase separation even under extensive heat aging conditions over a period of months due to kinetic limitations. Transmission electron microscopy is used to track morphological changes as a function of thermal aging. Interestingly, our results show that the rheological properties of the latex films are highly sensitive to morphology, and linear shear rheology is used to understand morphological changes. Overall, these results highlight the importance of bulk rheology as a simple and effective tool for understanding changes in morphology in multicomponent latex films.
RESUMO
Many procedures in modern clinical medicine rely on the use of electronic implants in treating conditions that range from acute coronary events to traumatic injury. However, standard permanent electronic hardware acts as a nidus for infection: bacteria form biofilms along percutaneous wires, or seed haematogenously, with the potential to migrate within the body and to provoke immune-mediated pathological tissue reactions. The associated surgical retrieval procedures, meanwhile, subject patients to the distress associated with re-operation and expose them to additional complications. Here, we report materials, device architectures, integration strategies, and in vivo demonstrations in rats of implantable, multifunctional silicon sensors for the brain, for which all of the constituent materials naturally resorb via hydrolysis and/or metabolic action, eliminating the need for extraction. Continuous monitoring of intracranial pressure and temperature illustrates functionality essential to the treatment of traumatic brain injury; the measurement performance of our resorbable devices compares favourably with that of non-resorbable clinical standards. In our experiments, insulated percutaneous wires connect to an externally mounted, miniaturized wireless potentiostat for data transmission. In a separate set-up, we connect a sensor to an implanted (but only partially resorbable) data-communication system, proving the principle that there is no need for any percutaneous wiring. The devices can be adapted to sense fluid flow, motion, pH or thermal characteristics, in formats that are compatible with the body's abdomen and extremities, as well as the deep brain, suggesting that the sensors might meet many needs in clinical medicine.
Assuntos
Implantes Absorvíveis , Encéfalo/metabolismo , Eletrônica/instrumentação , Monitorização Fisiológica/instrumentação , Próteses e Implantes , Silício , Implantes Absorvíveis/efeitos adversos , Administração Cutânea , Animais , Temperatura Corporal , Encéfalo/cirurgia , Desenho de Equipamento , Hidrólise , Masculino , Monitorização Fisiológica/efeitos adversos , Especificidade de Órgãos , Pressão , Próteses e Implantes/efeitos adversos , Ratos , Ratos Endogâmicos Lew , Telemetria/instrumentação , Tecnologia sem Fio/instrumentaçãoRESUMO
Materials that can be switched between low and high thermal conductivity states would advance the control and conversion of thermal energy. Employing in situ time-domain thermoreflectance (TDTR) and in situ synchrotron X-ray scattering, we report a reversible, light-responsive azobenzene polymer that switches between high (0.35 W m-1 K-1) and low thermal conductivity (0.10 W m-1 K-1) states. This threefold change in the thermal conductivity is achieved by modulation of chain alignment resulted from the conformational transition between planar (trans) and nonplanar (cis) azobenzene groups under UV and green light illumination. This conformational transition leads to changes in the π-π stacking geometry and drives the crystal-to-liquid transition, which is fully reversible and occurs on a time scale of tens of seconds at room temperature. This result demonstrates an effective control of the thermophysical properties of polymers by modulating interchain π-π networks by light.
RESUMO
Materials which selectively transport molecules offer powerful opportunities for concentrating and separating chemical agents. Here, utilizing static and dynamic chemical gradients, transport of molecules within swollen crosslinked polymers is demonstrated. Using an ≈200â µm static hydroxyl to hexyl gradient, the neutral ambipolar nerve agent surrogate diethyl (cyanomethyl)phosphonate (DECP) is directionally transported and concentrated 60-fold within 4â hours. To accelerate transport kinetics, a dynamic gradient (a "travelling wave") is utilized. Here, the non-polar dye pyrene was transported. The dynamic gradient is generated by an ion exchange process triggered by the localized introduction of an aqueous NaCl solution, which converts the gel from hydrophobic to hydrophilic. As the hydrophilic region expands, associated water enters the gel, and pyrene is pushed ahead of the expansion front. The dynamic gradient provides about 10-fold faster transport kinetics than the static gradient.
RESUMO
Thermal management in Li-ion batteries is critical for their safety, reliability, and performance. Understanding the thermal conductivity of the battery materials is crucial for controlling the temperature and temperature distribution in batteries. This work provides systemic quantitative measurements of the thermal conductivity of three important classes of solid electrolytes (SEs) over the temperature range 150 < T < 350 K. Studies include the oxides Li1.5 Al0.5 Ge1.5 (PO4 )3 and Li6.4 La3 Zr1.4 Ta0.6 O12 , sulfides Li2 S-P2 S5 , Li6 PS5 Cl, and Na3 PS4 , and halides Li3 InCl6 and Li3 YCl6 . Thermal conductivities of sulfide and halide SEs are in the range 0.45-0.70 W m-1 K-1 ; thermal conductivities of Li6.4 La3 Zr1.4 Ta0.6 O12 and Li1.5 Al0.5 Ge1.5 (PO4 )3 are 1.4 and 2.2 W m-1 K-1 , respectively. For most of the SEs studied in this work, the thermal conductivity increases with increasing temperature, that is, the thermal conductivity has a glass-like temperature dependence. The measured room-temperature thermal conductivities agree well with the calculated minimum thermal conductivities indicating that the phonon mean-free-paths in these SEs are close to an atomic spacing. The low, glass-like thermal conductivity of the SEs investigated is attributed to the combination of their complex crystal structures and the atomic-scale disorder induced by the materials processing methods that are typically needed to produce high ionic conductivities.
RESUMO
Here, we report a solid-phase approach to synthesize azobenzene and spiropyran derivatives. The divergent synthesis process requires no purification steps to obtain the desired product with a 28-55% yield, depending on the specific compound. For the spiropyran compounds, solid-phase resin cleavage is performed under mild conditions to minimize spiropyran ring opening. The solid-phase method enables the synthesis of a library of azobenzene and spiropyran derivatives without the need to develop purification strategies for each derivative.
RESUMO
Currently, the coronavirus crisis is leading many parts of the world to look critically at how they organize their supply chains, especially where public safety or strategic sectors are concerned. In September, the European Commission (EC) released its "Action Plan on Critical Raw Materials," the "2020 List of Critical Raw Materials," and a foresight study on critical raw materials for strategic technologies and sectors from the 2030 and 2050 perspectives. The Action Plan looks at the current and future challenges and proposes actions to reduce Europe's dependency on third countries, diversifying supply from both primary and secondary sources, and improving resource efficiency and circularity while promoting responsible sourcing worldwide.
RESUMO
Claudia Lubrano, Istituto Italiano di Tecnologia, and Università degli Studi di Napoli Federico II, Italy; Giovanni Maria Matrone, Istituto Italiano di Tecnologia, Italy; Csaba Forro, Istituto Italiano di Tecnologia, Italy, and Stanford University, USA; Zeinab Jahed, Stanford University, USA; Andreas Offenhaeusser, Forschungszentrum Jülich GmbH, Germany; Alberto Salleo, Bianxiao Cui, Stanford University, USA; Francesca Santoro, Istituto Italiano di Tecnologia, Italy.
RESUMO
Polymer brushes are found in biomedical and industrial technologies, where they exhibit functionalities considerably dependent on polymer brush-solvent-analyte interactions. It remains a difficult challenge to quickly analyze solvent-swollen polymer brushes, both at the solvent-polymer brush interface and in the brush interior, as well as to monitor the kinetics of interaction of solvent-swollen brushes with key analytes. Here, we demonstrate the novel use of silicon photonic microring resonators to characterize in situ swollen polymer brush-analyte interactions. By monitoring resonant wavelength shifts, we find that brush-solvent-analyte interaction parameters can be extracted from a single set of data or from successive analyte introductions using a single brush-coated sensor. The partition coefficient of three industrially relevant plasticizers into hydrophobic and hydrophilic brushes was determined and found to be in agreement with known solubility trends. We found that the diffusion coefficient of the plasticizer into the brush decreases as brush thickness increases, supporting a model of a dense inner brush layer and diffuse outer layer. pKa's of pH-sensitive brushes were determined on the microring resonator platform; upon increasing the dry brush thickness, the pKa for poly(2-dimethylamino ethyl methacrylate) decreased from 8.5 to approach the bulk material pKa of 7.3 and showed dependence on the presence and concentration of salt. These proof-of-concept experiments show how the surface-sensitive nature of the microring resonator detection platform provides valuable information about the interaction of the polymer brushes with the solvents and analytes, not easily accessed by other techniques.
RESUMO
Recent work demonstrates that processes of stress release in prestrained elastomeric substrates can guide the assembly of sophisticated 3D micro/nanostructures in advanced materials. Reported application examples include soft electronic components, tunable electromagnetic and optical devices, vibrational metrology platforms, and other unusual technologies, each enabled by uniquely engineered 3D architectures. A significant disadvantage of these systems is that the elastomeric substrates, while essential to the assembly process, can impose significant engineering constraints in terms of operating temperatures and levels of dimensional stability; they also prevent the realization of 3D structures in freestanding forms. Here, we introduce concepts in interfacial photopolymerization, nonlinear mechanics, and physical transfer that bypass these limitations. The results enable 3D mesostructures in fully or partially freestanding forms, with additional capabilities in integration onto nearly any class of substrate, from planar, hard inorganic materials to textured, soft biological tissues, all via mechanisms quantitatively described by theoretical modeling. Illustrations of these ideas include their use in 3D structures as frameworks for templated growth of organized lamellae from AgCl-KCl eutectics and of atomic layers of WSe2 from vapor-phase precursors, as open-architecture electronic scaffolds for formation of dorsal root ganglion (DRG) neural networks, and as catalyst supports for propulsive systems in 3D microswimmers with geometrically controlled dynamics. Taken together, these methodologies establish a set of enabling options in 3D micro/nanomanufacturing that lie outside of the scope of existing alternatives.
Assuntos
Nanoestruturas/química , Alicerces Teciduais/química , Animais , Gânglios Espinais/citologia , Masculino , Rede Nervosa/citologia , Impressão Tridimensional , Ratos , Ratos Sprague-Dawley , Temperatura , Engenharia Tecidual/métodosRESUMO
An emergent theme in mono- and multivalent ion batteries is to utilize nanoparticles (NPs) as electrode materials based on the phenomenological observations that their short ion diffusion length and large electrode-electrolyte interface can lead to improved ion insertion kinetics compared to their bulk counterparts. However, the understanding of how the NP size fundamentally relates to their electrochemical behaviors (e.g., charge storage mechanism, phase transition associated with ion insertion) is still primitive. Here, we employ spinel λ-MnO2 particles as a model cathode material, which have effective Mg2+ ion intercalation but with their size effect poorly understood to investigate their operating mechanism via a suite of electrochemical and structural characterizations. We prepare two differently sized samples, the small nanoscopic λ-MnO2 particles (81 ± 25 nm) and big micron-sized ones (814 ± 207 nm) via postsynthesis size-selection. Analysis of the charge storage mechanisms shows that the stored charge from Mg2+ ion intercalation dominates in both systems and is â¼10 times higher in small particles than that in the big ones. From both X-ray diffraction and atomic-resolution scanning transmission electron microscopy imaging, we reveal a fundamental difference in phase transition of the differently sized particles during Mg2+ ion intercalation: the small NPs undergo a solid-solution-like phase transition which minimizes lattice mismatch and energy penalty for accommodating new phases, whereas the big particles follow conventional multiphase transformation. We show that this pathway difference is related to the improved electrochemical performance (e.g., rate capability, cycling performance) of small particles over the big ones which provides important insights in encoding within the particle dimension, that is, the single-phase transition pathway in high-performance electrode materials for multivalent ion batteries.
RESUMO
Spiropyran molecular switches, in conjunction with transition metal ions, are shown to operate as reversible polymer cross-linkers. Solutions containing a spiropyran-functionalized polymer and transition metal ions underwent reversible thermally triggered (light-triggered) transient network formation (disruption) driven by the association (dissociation) of metal-ligand cross-links. Heat triggers metal-ion-mediated cross-linking via thermal isomerization of spiropyran to its open, merocyanine form, and exposure to visible light triggers dissociation of polymer cross-links. Cross-linking is found to depend on both the valence of the ion as well as the molar ratio of spiropyran to metal salt. We envision this to be a starting point for the design of many types of reversible, stimuli-responsive polymers, utilizing the fact that spiropyrans have been shown to respond to a variety of stimuli including heat, light, pH, and mechanical force.