Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 290(16): 10504-17, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25724652

RESUMO

APOBEC3G (A3G) is a cellular cytidine deaminase that restricts HIV-1 replication by inducing G-to-A hypermutation in viral DNA and by deamination-independent mechanisms. HIV-1 Vif binds to A3G, resulting in its degradation via the 26 S proteasome. Therefore, this interaction represents a potential therapeutic target. To identify compounds that inhibit interaction between A3G and HIV-1 Vif in a high throughput format, we developed a homogeneous time-resolved fluorescence resonance energy transfer assay. A 307,520 compound library from the NIH Molecular Libraries Small Molecule Repository was screened. Secondary screens to evaluate dose-response performance and off-target effects, cell-based assays to identify compounds that attenuate Vif-dependent degradation of A3G, and assays testing antiviral activity in peripheral blood mononuclear cells and T cells were employed. One compound, N.41, showed potent antiviral activity in A3G(+) but not in A3G(-) T cells and had an IC50 as low as 8.4 µM and a TC50 of >100 µM when tested against HIV-1Ba-L replication in peripheral blood mononuclear cells. N.41 inhibited the Vif-A3G interaction and increased cellular A3G levels and incorporation of A3G into virions, thereby attenuating virus infectivity in a Vif-dependent manner. N.41 activity was also species- and Vif-dependent. Preliminary structure-activity relationship studies suggest that a hydroxyl moiety located at a phenylamino group is critical for N.41 anti-HIV activity and identified N.41 analogs with better potency (IC50 as low as 4.2 µM). These findings identify a new lead compound that attenuates HIV replication by liberating A3G from Vif regulation and increasing its innate antiviral activity.


Assuntos
Fármacos Anti-HIV/farmacologia , Citidina Desaminase/genética , HIV-1/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Linfócitos T/efeitos dos fármacos , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Desaminase APOBEC-3G , Fármacos Anti-HIV/química , Bioensaio , Linhagem Celular , Citidina Desaminase/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica , Células HEK293 , HIV-1/genética , HIV-1/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Linfócitos T/metabolismo , Linfócitos T/virologia , Replicação Viral/efeitos dos fármacos , Produtos do Gene vif do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
2.
Cell Microbiol ; 17(12): 1868-82, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26118955

RESUMO

Cytoadhesion of Plasmodium falciparum-infected erythrocytes to endothelial protein C receptor (EPCR) is associated with severe malaria. It has been postulated that parasite binding could exacerbate microvascular coagulation and endothelial dysfunction in cerebral malaria by impairing the protein C-EPCR interaction, but the extent of binding inhibition has not been fully determined. Here we expressed the cysteine-rich interdomain region (CIDRα1) domain from a variety of domain cassette (DC) 8 and DC13 P. falciparum erythrocyte membrane protein 1 proteins and show they interact in a distinct manner with EPCR resulting in weak, moderate and strong inhibition of the activated protein C (APC)-EPCR interaction. Overall, there was a positive correlation between CIDRα1-EPCR binding activity and APC blockade activity. In addition, our analysis from a combination of mutagenesis and blocking antibodies finds that an Arg81 (R81) in EPCR plays a pivotal role in CIDRα1 binding, but domains with weak and strong APC blockade activity were distinguished by their sensitivity to inhibition by anti-EPCR mAb 1535, implying subtle differences in their binding footprints. These data reveal a previously unknown functional heterogeneity in the interaction between P. falciparum and EPCR and have major implications for understanding the distinct clinical pathologies of cerebral malaria and developing new treatment strategies.


Assuntos
Adesão Celular , Células Endoteliais/fisiologia , Interações Hospedeiro-Patógeno , Malária/parasitologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/antagonistas & inibidores , Animais , Antígenos CD/genética , Células CHO , Cricetulus , Análise Mutacional de DNA , Receptor de Proteína C Endotelial , Humanos , Malária/patologia , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Superfície Celular/genética , Análise de Sequência de DNA
3.
J Virol ; 83(5): 2374-81, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19109396

RESUMO

The APOBEC3 cytidine deaminases are potent antiviral factors that restrict the replication of human immunodeficiency virus type 1 (HIV-1). In HIV-1-infected CD4+ T cells, the viral accessory protein Vif binds to APOBEC3G (A3G), APOBEC3F (A3F), and APOBEC3C (A3C) and targets these proteins for polyubiquitination by forming an E3 ubiquitin ligase with cullin 5. Previous studies identified regions of HIV-1 Vif, 40YRHHY44 and 12QVDRMR17, which are important for interaction with A3G and A3F, respectively, and showed that Vif residues 54 to 71 are sufficient for A3G binding. Here, we identify 69YXXL72 as a novel conserved motif in HIV-1 Vif that mediates binding to human A3G and its subsequent degradation. Studies on other APOBEC3 proteins revealed that Tyr69 and Leu72 are important for the degradation of A3F and A3C as well. Similar to A3F, A3C regulation is also mediated by Vif residues 12QVDRMR17. Simian immunodeficiency virus (SIV) Vif was shown to bind and degrade African green monkey A3G (agmA3G) and, unexpectedly, human A3C. The YXXL motif of SIVagm Vif was important for the inactivation of agmA3G and human A3C. Unlike HIV-1 Vif, however, SIVagm Vif does not require Tyr40 and His43 for agmA3G degradation. Tyr69 in the YXXL motif was critical for binding of recombinant glutathione S-transferase-Vif(1-94) to A3G in vitro. These results suggest that the YXXL motif in Vif is a potential target for small-molecule inhibitors to block Vif interaction with A3G, A3F, and A3C, and thereby protect cells against HIV-1 infection.


Assuntos
Citidina Desaminase/metabolismo , Vírus da Imunodeficiência Símia/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Desaminase APOBEC-3G , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , HIV-1/metabolismo , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Relação Estrutura-Atividade
4.
J Virol ; 81(23): 13235-41, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17898068

RESUMO

The APOBEC3 cytidine deaminases are potent antiviral factors that restrict replication of human immunodeficiency virus type 1 (HIV-1). HIV-1 Vif binds APOBEC3G and APOBEC3F and targets these proteins for ubiquitination by forming an E3 ubiquitin ligase with cullin 5 and elongins B and C. The N-terminal region of Vif is required for APOBEC3G binding, but the binding site(s) is unknown. To identify the APOBEC3G binding site in Vif, we established a scalable binding assay in a format compatible with development of high-throughput screens. In vitro binding assays using recombinant proteins identified Vif peptides and monoclonal antibodies that inhibit Vif-APOBEC3G binding and suggested involvement of Vif residues 33 to 83 in APOBEC3G binding. Cell-based binding assays confirmed these results and demonstrated that residues 40 to 71 in the N terminus of Vif contain a nonlinear binding site for APOBEC3G. Mutation of the highly conserved residues His42/43 but not other charged residues in this region inhibited Vif-APOBEC3G binding, Vif-mediated degradation of APOBEC3G, and viral infectivity. In contrast, mutation of these residues had no significant effect on Vif binding and degradation of APOBEC3F, suggesting a differential requirement for His42/43 in Vif binding to APOBEC3G and APOBEC3F. These results identify a nonlinear APOBEC3 binding site in the N terminus of Vif and demonstrate that peptides or antibodies directed against this region can inhibit Vif-APOBEC3G binding, validating the Vif-APOBEC3 interface as a potential drug target.


Assuntos
Citidina Desaminase/metabolismo , HIV-1/fisiologia , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Desaminase APOBEC-3G , Substituição de Aminoácidos/genética , Sítios de Ligação/genética , Sítios de Ligação/fisiologia , HIV-1/genética , HIV-1/imunologia , Humanos , Mutagênese Sítio-Dirigida , Ligação Proteica , Mapeamento de Interação de Proteínas , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
5.
mBio ; 7(4)2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27406562

RESUMO

UNLABELLED: Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expressing domain cassette 13 (DC13) of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family have dual binding specificity for EPCR and ICAM-1 and further mapped ICAM-1 binding to the first DBLß domain following the PfEMP1 head structure in both proteins. As PfEMP1 head structures have diverged between group A (EPCR binders) and groups B and C (CD36 binders), we also investigated how ICAM-1-binding parasites with different coreceptor binding traits influence P. falciparum-infected erythrocyte binding to endothelial cells. Whereas levels of binding to tumor necrosis factor alpha (TNF-α)-stimulated endothelial cells from the lung and brain by all ICAM-1-binding parasite lines increased, group A (EPCR and ICAM-1) was less dependent than group B (CD36 and ICAM-1) on ICAM-1 upregulation. Furthermore, both group A DC13 parasite lines had higher binding levels to brain endothelial cells (a microvascular niche with limited CD36 expression). This study shows that ICAM-1 is a coreceptor for a subset of EPCR-binding parasites and provides the first evidence of how EPCR and ICAM-1 interact to mediate parasite binding to both resting and TNF-α-activated primary brain and lung endothelial cells. IMPORTANCE: Cerebral malaria is a severe neurological complication of P. falciparum infection associated with infected erythrocyte (IE) binding in cerebral vessels. Yet little is known about the mechanisms by which parasites adhere in the brain or other microvascular sites. Here, we studied parasite lines expressing group A DC13-containing PfEMP1 variants, a subset that has previously been shown to have high brain cell- and other endothelial cell-binding activities. We show that DC13-containing PfEMP1 variants have dual EPCR- and ICAM-1-binding activities and that both receptors are involved in parasite adherence to lung and brain endothelial cells. As both EPCR and ICAM-1 are implicated in cerebral malaria, these findings suggest the possibility that parasites with dual binding activities are involved in parasite sequestration to microvascular beds with low CD36 expression, such as the brain, and we urge more research into the multiadhesive properties of PfEMP1 variants.


Assuntos
Antígenos CD/metabolismo , Adesão Celular , Células Endoteliais/fisiologia , Eritrócitos/fisiologia , Eritrócitos/parasitologia , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Células Cultivadas , Receptor de Proteína C Endotelial , Humanos , Mapeamento de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA