Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 501(7467): 412-5, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23965628

RESUMO

Ageing is due to an accumulation of various types of damage, and mitochondrial dysfunction has long been considered to be important in this process. There is substantial sequence variation in mammalian mitochondrial DNA (mtDNA), and the high mutation rate is counteracted by different mechanisms that decrease maternal transmission of mutated mtDNA. Despite these protective mechanisms, it is becoming increasingly clear that low-level mtDNA heteroplasmy is quite common and often inherited in humans. We designed a series of mouse mutants to investigate the extent to which inherited mtDNA mutations can contribute to ageing. Here we report that maternally transmitted mtDNA mutations can induce mild ageing phenotypes in mice with a wild-type nuclear genome. Furthermore, maternally transmitted mtDNA mutations lead to anticipation of reduced fertility in mice that are heterozygous for the mtDNA mutator allele (PolgA(wt/mut)) and aggravate premature ageing phenotypes in mtDNA mutator mice (PolgA(mut/mut)). Unexpectedly, a combination of maternally transmitted and somatic mtDNA mutations also leads to stochastic brain malformations. Our findings show that a pre-existing mutation load will not only allow somatic mutagenesis to create a critically high total mtDNA mutation load sooner but will also increase clonal expansion of mtDNA mutations to enhance the normally occurring mosaic respiratory chain deficiency in ageing tissues. Our findings suggest that maternally transmitted mtDNA mutations may have a similar role in aggravating aspects of normal human ageing.


Assuntos
Envelhecimento/genética , Encéfalo/anormalidades , Encéfalo/metabolismo , DNA Mitocondrial/genética , Herança Extracromossômica/genética , Mitocôndrias/genética , Mutação/genética , Envelhecimento/patologia , Alelos , Animais , Encéfalo/crescimento & desenvolvimento , Núcleo Celular/genética , Feminino , Genoma/genética , Heterozigoto , Tamanho da Ninhada de Vivíparos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese/genética , Fenótipo , Reprodução/genética , Reprodução/fisiologia , Processos Estocásticos
2.
Cereb Cortex ; 26(4): 1804-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26838771

RESUMO

Nogo receptor 1 (NgR1) is expressed in forebrain neurons and mediates nerve growth inhibition in response to Nogo and other ligands. Neuronal activity downregulates NgR1 and the inability to downregulate NgR1 impairs long-term memory. We investigated behavior in a serial behavioral paradigm in mice that overexpress or lack NgR1, finding impaired locomotor behavior and recognition memory in mice lacking NgR1 and impaired sequential spatial learning in NgR1 overexpressing mice. We also investigated a role for NgR1 in drug-mediated sensitization and found that repeated cocaine exposure caused stronger locomotor responses but limited development of stereotypies in NgR1 overexpressing mice. This suggests that NgR1-regulated synaptic plasticity is needed to develop stereotypies. Ex vivo magnetic resonance imaging and diffusion tensor imaging analyses of NgR1 overexpressing brains did not reveal any major alterations. NgR1 overexpression resulted in significantly reduced density of mature spines and dendritic complexity. NgR1 overexpression also altered cocaine-induced effects on spine plasticity. Our results show that NgR1 is a negative regulator of both structural synaptic plasticity and dendritic complexity in a brain region-specific manner, and highlight anterior cingulate cortex as a key area for memory-related plasticity.


Assuntos
Encéfalo/metabolismo , Dendritos/fisiologia , Locomoção , Plasticidade Neuronal , Receptor Nogo 1/metabolismo , Reconhecimento Psicológico/fisiologia , Aprendizagem Espacial/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Cocaína/administração & dosagem , Dendritos/efeitos dos fármacos , Imagem de Tensor de Difusão , Feminino , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Locomoção/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Receptor Nogo 1/genética , Teste de Desempenho do Rota-Rod
3.
J Neurosci Res ; 91(12): 1533-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038231

RESUMO

The peptides dynorphin and enkephalin modulate many physiological processes, such as motor activity and the control of mood and motivation. Their expression in the caudate putamen (CPu) is regulated by dopamine and opioid receptors. The current work was designed to explore the early effects of the acute activation of D4 and/or µ opioid receptors by the agonists PD168,077 and morphine, respectively, on the regulation of the expression of these opioid peptides in the rat CPu, on transcription factors linked to them, and on the expression of µ opioid receptors. In situ hybridization experiments showed that acute treatment with morphine (10 mg/kg) decreased both enkephalin and dynorphin mRNA levels in the CPu after 30 min, but PD168,077 (1 mg/kg) did not modify their expression. Coadministration of the two agonists demonstrated that PD168,077 counteracted the morphine-induced changes and even increased enkephalin mRNA levels. The immunohistochemistry studies showed that morphine administration also increased striatal µ opioid receptor immunoreactivity but reduced P-CREB expression, effects that were blocked by the PD168,077-induced activation of D4 receptors. The current results present evidence of functional D4 -µ opioid receptor interactions, with consequences for the opioid peptide mRNA levels in the rat CPu, contributing to the integration of DA and opioid peptide signaling.


Assuntos
Analgésicos Opioides/farmacologia , Morfina/farmacologia , Peptídeos Opioides/biossíntese , Putamen/metabolismo , Receptores de Dopamina D4/metabolismo , Animais , Dinorfinas/biossíntese , Encefalinas/biossíntese , Imuno-Histoquímica , Hibridização In Situ , Masculino , Putamen/efeitos dos fármacos , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/metabolismo
4.
Proc Natl Acad Sci U S A ; 107(46): 20087-92, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21041631

RESUMO

At present, there are few means to track symptomatic stages of CNS aging. Thus, although metabolic changes are implicated in mtDNA mutation-driven aging, the manifestations remain unclear. Here, we used normally aging and prematurely aging mtDNA mutator mice to establish a molecular link between mitochondrial dysfunction and abnormal metabolism in the aging process. Using proton magnetic resonance spectroscopy and HPLC, we found that brain lactate levels were increased twofold in both normally and prematurely aging mice during aging. To correlate the striking increase in lactate with tissue pathology, we investigated the respiratory chain enzymes and detected mitochondrial failure in key brain areas from both normally and prematurely aging mice. We used in situ hybridization to show that increased brain lactate levels were caused by a shift in transcriptional activities of the lactate dehydrogenases to promote pyruvate to lactate conversion. Separation of the five tetrameric lactate dehydrogenase (LDH) isoenzymes revealed an increase of those dominated by the Ldh-A product and a decrease of those rich in the Ldh-B product, which, in turn, increases pyruvate to lactate conversion. Spectrophotometric assays measuring LDH activity from the pyruvate and lactate sides of the reaction showed a higher pyruvate → lactate activity in the brain. We argue for the use of lactate proton magnetic resonance spectroscopy as a noninvasive strategy for monitoring this hallmark of the aging process. The mtDNA mutator mouse allows us to conclude that the increased LDH-A/LDH-B ratio causes high brain lactate levels, which, in turn, are predictive of aging phenotypes.


Assuntos
Envelhecimento/metabolismo , Encéfalo/enzimologia , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Animais , DNA Mitocondrial/genética , Regulação Enzimológica da Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/genética , Lactato Desidrogenase 5 , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Mutação/genética , Especificidade de Órgãos
5.
Proc Natl Acad Sci U S A ; 106(48): 20476-81, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19915139

RESUMO

Formation of lasting memories is believed to rely on structural alterations at the synaptic level. We had found that increased neuronal activity down-regulates Nogo receptor-1 (NgR1) in brain regions linked to memory formation and storage, and postulated this to be required for formation of lasting memories. We now show that mice with inducible overexpression of NgR1 in forebrain neurons have normal long-term potentiation and normal 24-h memory, but severely impaired month-long memory in both passive avoidance and swim maze tests. Blocking transgene expression normalizes these memory impairments. Nogo, Lingo-1, Troy, endogenous NgR1, and BDNF mRNA expression levels were not altered by transgene expression, suggesting that the impaired ability to form lasting memories is directly coupled to inability to down-regulate NgR1. Regulation of NgR1 may therefore serve as a key regulator of memory consolidation. Understanding the molecular underpinnings of synaptic rearrangements that carry lasting memories may facilitate development of treatments for memory dysfunction.


Assuntos
Regulação da Expressão Gênica/fisiologia , Memória/fisiologia , Proteínas da Mielina/fisiologia , Prosencéfalo/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Eletrofisiologia , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nogo , Receptores do Fator de Necrose Tumoral/metabolismo , Teste de Desempenho do Rota-Rod , Transgenes/genética
6.
Hippocampus ; 20(7): 820-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19623606

RESUMO

One hypothesis of depression is that it is caused by reduced neuronal plasticity including hippocampal neurogenesis. In this study, we compared the effects of three long-term antidepressant treatments: escitalopram, voluntary running, and their combination on hippocampal cell proliferation, NPY and the NPY-Y1 receptor mRNAs, targets assumed to be important for hippocampal plasticity and mood disorders. An animal model of depression, the Flinders Sensitive Line (FSL) rat, was used and female rats were chosen because the majority of the depressed population is females. We investigated if these treatments were correlated to immobility, swimming, and climbing behaviors, which are associated with an overall, serotonergic-like and noradrenergic-like antidepressant response, in the Porsolt swim test (PST). Interestingly, while escitalopram, running and their combination increased the number of hippocampal BrdU immunoreactive cells, the antidepressant-like effect was only detected in the running group and the group with access both to running wheel and escitalopram. Hippocampal NPY mRNA and the NPY-Y1 receptor mRNA were elevated by running and the combined treatment. Moreover, correlations were detected between NPY mRNA levels and climbing and cell proliferation and NPY-Y1 receptor mRNA levels and swimming. Our results suggest that increased cell proliferation is not necessarily associated with an antidepressant effect. However, treatments that were associated with an antidepressant-like effect did regulate hippocampal levels of mRNAs encoding NPY and/or the NPY-Y1 receptor and support the notion that NPY can stimulate cell proliferation and induce an antidepressant-like response.


Assuntos
Antidepressivos/farmacologia , Citalopram/farmacologia , Depressão/fisiopatologia , Atividade Motora/fisiologia , Neuropeptídeo Y/biossíntese , Receptores de Neuropeptídeo Y/biossíntese , Animais , Bromodesoxiuridina , Proliferação de Células , Depressão/metabolismo , Depressão/terapia , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Imuno-Histoquímica , Hibridização In Situ , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neuropeptídeo Y/efeitos dos fármacos , RNA Mensageiro/análise , Ratos , Receptores de Neuropeptídeo Y/efeitos dos fármacos , Corrida
7.
Mol Cell Neurosci ; 39(4): 586-91, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18790059

RESUMO

LRRK2, alpha-synuclein, UCH-L1 and DJ-1 are implicated in the etiology of Parkinson's disease. We show for the first time that increase in striatal alpha-synuclein levels induce increased Lrrk2 mRNA levels while Dj-1 and Uch-L1 are unchanged. We also demonstrate that a mouse strain lacking the dopamine signaling molecule DARPP-32 has significantly reduced levels of both Lrrk2 and alpha-synuclein, while mice carrying a disabling mutation of the DARPP-32 phosphorylation site T34A or lack alpha-synuclein do not show any changes. To test if striatal dopamine depletion influences Lrrk2 or alpha-synuclein expression, we used the neurotoxin 6-hydroxydopamine in rats and MitoPark mice in which there is progressive degeneration of dopamine neurons. Because striatal Lrrk2 and alpha-synuclein levels were not changed by dopamine depletion, we conclude that Lrrk2 and alpha-synuclein mRNA levels are possibly co-regulated, but they are not influenced by striatal dopamine levels.


Assuntos
Corpo Estriado/metabolismo , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , alfa-Sinucleína/metabolismo , Animais , Corpo Estriado/anatomia & histologia , Dopamina/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Oxidopamina/metabolismo , Doença de Parkinson/etiologia , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Sprague-Dawley , alfa-Sinucleína/genética
8.
Brain Res ; 1720: 146301, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31226324

RESUMO

Although a good deal is known about the genetics and pathophysiology of Parkinson's disease (PD), and information is emerging about its cause, there are no pharmacological treatments shown to have a significant, sustained capacity to prevent or attenuate the ongoing neurodegenerative processes. However, there is accumulating clinical results to suggest that physical exercise is such a treatment, and studies of animal models of the dopamine (DA) deficiency associated with the motor symptoms of PD further support this hypothesis. Exercise is a non-pharmacological, economically practical, and sustainable intervention with little or no risk and with significant additional health benefits. In this study, we investigated the long-term effects of voluntary exercise on motor behavior and brain biochemistry in the transgenic MitoPark mouse PD model with progressive degeneration of the DA systems caused by DAT-driven deletion of the mitochondrial transcription factor TFAM in DA neurons. We found that voluntary exercise markedly improved behavioral function, including overall motor activity, narrow beam walking, and rotarod performance. There was also improvement of biochemical markers of nigrostriatal DA input. This was manifested by increased levels of DA measured by HPLC, and of the DA membrane transporter measured by PET. Moreover, exercise increased oxygen consumption and, by inference, ATP production via oxidative phosphorylation. Thus, exercise augmented aerobic mitochondrial oxidative metabolism vs glycolysis in the nigrostriatal system. We conclude that there are clear-cut physiological mechanisms for beneficial effects of exercise in PD.


Assuntos
Doença de Parkinson/metabolismo , Esforço Físico/fisiologia , Animais , Biomarcadores/metabolismo , Corpo Estriado/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Atividade Motora/fisiologia , Doença de Parkinson/terapia , Substância Negra/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
9.
Hippocampus ; 18(8): 785-92, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18493951

RESUMO

Both vitamin A deficiency and high doses of retinoids can result in learning and memory impairments, depression as well as decreases in cell proliferation, neurogenesis and cell survival. Physical activity enhances hippocampal neurogenesis and can also exert an antidepressant effect. Here we elucidate a putative link between running, retinoid signaling, and neurogenesis in hippocampus. Adult transgenic reporter mice designed to detect ligand-activated retinoic acid receptors (RAR) or retinoid X receptors (RXR) were used to localize the distribution of activated RAR or RXR at the single-cell level in the brain. Two months of voluntary wheel-running induced an increase in hippocampal neurogenesis as indicated by an almost two-fold increase in doublecortin-immunoreactive cells. Running activity was correlated with neurogenesis. Under basal conditions a distinct pattern of RAR-activated cells was detected in the granule cell layer of the dentate gyrus (DG), thalamus, and cerebral cortex layers 3-4 and to a lesser extent in hippocampal pyramidal cell layers CA1-CA3. Running did not change the number of RAR-activated cells in the DG. There was no correlation between running and RAR activation or between RAR activation and neurogenesis in the DG of hippocampus. Only a few scattered activated retinoid X receptors were found in the DG under basal conditions and after wheel-running, but RXR was detected in other areas such as in the hilus region of hippocampus and in layer VI of cortex cerebri. RAR agonists affect mood in humans and reduce neurogenesis, learning and memory in animal models. In our study, long-term running increased neurogenesis but did not alter RAR ligand activation in the DG in individually housed mice. Thus, our data suggest that the effects of exercise on neurogenesis and other plasticity changes in the hippocampal formation are mediated by mechanisms that do not involve retinoid receptor activation.


Assuntos
Giro Denteado/fisiologia , Receptores do Ácido Retinoico/metabolismo , Corrida/fisiologia , Animais , Comportamento Animal , Proteínas de Ligação a DNA/metabolismo , Giro Denteado/anatomia & histologia , Giro Denteado/efeitos dos fármacos , Proteínas do Domínio Duplacortina , Genes Reporter , Óperon Lac , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Células Piramidais/metabolismo , Receptores do Ácido Retinoico/agonistas , Receptores do Ácido Retinoico/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Fatores de Transcrição/metabolismo
10.
Brain ; 130(Pt 11): 2951-61, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17913768

RESUMO

Cortical sensory maps can reorganize in the adult brain in an experience-dependent manner. We monitored somatosensory cortical reorganization after sensory deafferentation using functional magnetic resonance imaging (fMRI) in rats subjected to complete transection of the mid-thoracic spinal cord. Cortical representation in response to spared forelimb stimulation was observed to enlarge and invade adjacent sensory-deprived hind limb territory in the primary somatosensory cortex as early as 3 days after injury. Functional MRI also demonstrated long-term cortical plasticity accompanied by increased thalamic activation. To support the notion that alterations of cortical neuronal circuitry after spinal cord injury may underlie the fMRI changes, we quantified transcriptional activities of several genes related to cortical plasticity including the Nogo receptor (NgR), its co-receptor LINGO-1 and brain derived neurotrophic factor (BDNF), using in situ hybridization. We demonstrate that NgR and LINGO-1 are down-regulated specifically in cortical areas deprived of sensory input and in adjacent cortex from 1 day after injury, while BDNF is up-regulated. Our results demonstrate that cortical neurons react to sensory deprivation by decreasing transcriptional activities of genes encoding the Nogo receptor components in the sensory deprived and the anatomically adjacent non-deprived area. Combined with the BDNF up-regulation, these changes presumably allow structural changes in the neuropil. Our observations therefore suggest an involvement of Nogo signalling in cortical activity-dependent plasticity in the somatosensory system. In spinal cord injury, cortical reorganization as shown here can become a disadvantage, much like the situation in amblyopia or phantom sensation. Successful strategies to repair sensory pathways at the spinal cord level may not lead to proper reestablishment of cortical connections, once deprived hind limb cortical areas have been reallocated to forelimb use. In such situations, methods to control cortical plasticity, possibly by targeting Nogo signalling, may become helpful.


Assuntos
Imageamento por Ressonância Magnética , Plasticidade Neuronal/fisiologia , Receptores de Peptídeos/metabolismo , Córtex Somatossensorial/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Vias Aferentes/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Regulação para Baixo , Estimulação Elétrica , Feminino , Membro Anterior , Proteínas Ligadas por GPI , Glutamato Descarboxilase/genética , Hibridização In Situ , Modelos Animais , Proteínas da Mielina , Receptor Nogo 1 , Membro Fantasma/fisiopatologia , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular , Receptores de Peptídeos/genética , Córtex Somatossensorial/metabolismo , Traumatismos da Medula Espinal/metabolismo , Fatores de Tempo
11.
Neuroreport ; 18(10): 1039-43, 2007 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-17558292

RESUMO

Social isolation has profound effects on animal behavior and dopamine systems. We investigated the effect of social isolation on the dopamine receptor and neuropeptide mRNAs in the brain reward system in an animal model of depression, the Flinders Sensitive Line rats and Sprague-Dawley controls. We demonstrate that socially isolated but not group housed Flinders sensitive line rats had lower dopamine D2 receptor mRNA levels compared with Sprague-Dawley rats. Isolated and group housed Flinders Sensitive Line rats had higher levels of dopamine D1 receptor and substance P and enkephalin but not dynorphin mRNAs when compared with Sprague-Dawley rats. Our findings of decreased dopamine D2 receptor levels in socially isolated Flinders Sensitive Line rats suggest that low D2 receptor expression may play a role in pathophysiology of depression.


Assuntos
Depressão/metabolismo , Regulação da Expressão Gênica/fisiologia , Receptores de Dopamina D2/metabolismo , Isolamento Social , Análise de Variância , Animais , Encéfalo/metabolismo , Depressão/genética , Modelos Animais de Doenças , Feminino , Hibridização In Situ/métodos , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos , Ratos Sprague-Dawley , Receptores de Dopamina D2/genética
12.
Physiol Behav ; 92(1-2): 136-40, 2007 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-17561174

RESUMO

Natural behaviors such as eating, drinking, reproduction and exercise activate brain reward pathways and consequently the individual engages in these behaviors to receive the reward. However, drugs of abuse are even more potent in activating the reward pathways. Rewarding behaviors and addictive drugs also affect other parts of the brain not directly involved in the mediation of reward. For instance, running increases neurogenesis in hippocampus and is beneficial as an antidepressant in a genetic animal model of depression and in depressed humans. Here we discuss and compare neurochemical and functional changes in the brain after addictive drugs and exercise with a focus on brain reward pathways and hippocampus.


Assuntos
Comportamento Aditivo/psicologia , Depressão/psicologia , Hipocampo , Recompensa , Corrida/psicologia , Animais , Comportamento Aditivo/genética , Comportamento Aditivo/fisiopatologia , Proliferação de Células , Depressão/metabolismo , Modelos Animais de Doenças , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Endogâmicos , Corrida/fisiologia
13.
Neuropsychopharmacology ; 31(2): 256-64, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16034445

RESUMO

Physical activity has documented beneficial effect in treatment of depression. Recently, we found an antidepressant-like effect of running in an animal model of depression, the Flinders Sensitive Line (FSL) and demonstrated that it was associated with increased hippocampal cell proliferation. In this study, we analyzed levels of mRNAs encoding the neuropeptide Y (NPY) and the opioid peptides dynorphin and enkephalin in hippocampus and correlated these to cell proliferation in the FSL and in the 'nondepressed' Flinders Resistant Line (FRL) strain, with/without access to running wheels. Running increased NPY mRNA in dentate gyrus and the CA4 region in FSL, but not in FRL rats. NPY mRNA increase was correlated to increased cell proliferation in the subgranular zone of dentate gyrus. Baseline dynorphin and enkephalin mRNA levels in the dentate gyrus were lower in the FSL compared to the FRL strain. Running had no effect on dynorphin and enkephalin mRNAs in the FSL strain but it decreased dynorphin mRNA, and there was a trend to increased enkephalin mRNA in the FRL rats. Thus, it would appear that the CNS effects of running are different in 'depressed' and control animals; modification of NPY, a peptide associated with depression and anxiety, in depressed animals, vs effects on opioids, associated with the reward systems, in healthy controls. Our data support the hypothesis that NPY neurotransmission in hippocampus is malfunctioning in depression and that antidepressive treatment, in this case wheel running, will normalize it. In addition, we also show that the increased NPY after running is correlated to increased cell proliferation, which is associated with an antidepressive-like effect.


Assuntos
Proliferação de Células , Depressão/terapia , Dinorfinas/metabolismo , Encefalinas/metabolismo , Terapia por Exercício , Neuropeptídeo Y/metabolismo , Corrida/fisiologia , Análise de Variância , Animais , Bromodesoxiuridina/administração & dosagem , Bromodesoxiuridina/metabolismo , Contagem de Células/métodos , Depressão/metabolismo , Modelos Animais de Doenças , Dinorfinas/genética , Encefalinas/genética , Hipocampo/metabolismo , Hipocampo/patologia , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Masculino , Neuropeptídeo Y/genética , Ratos , Ratos Endogâmicos
14.
J Immunol Methods ; 312(1-2): 118-25, 2006 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-16697001

RESUMO

Beta-endorphin radioimmunoassays (RIAs) are widely performed following physical, emotional and environmental challenges in the rat. In the literature, a wide range of techniques have been described, but in the present study, we have focused on methodological aspects of beta-endorphin RIAs, investigating various characteristics of human and rat specific antibodies. Initial studies verified that the RIA outcome was not appropriate when using non-species compatible components. Novel rat beta-endorphin antibodies, r 4114 and r 4268, were raised in rabbits and characterised in terms of specificity, avidity and titer. Both of the new antisera showed 68.1% cross-reactivity with human beta-endorphin. The ED50 was 50+/-8 pmol/l, and the mean ED80 was 17 pmol/l for r 4268 but three-fold higher for r 4114. The intra-assay coefficient of variation (CV) was 7% at 100 pmol/l and the inter-assay CV was 10% at the same level for r 4268 and similar for r 4114. Using this novel rat beta-endorphin RIA for analyses of diurnal influence and removal from the Animal House cage, no significant changes were observed in either the hypothalamus or peri-aqueductal grey regions. These results suggest that rat beta-endorphin concentrations in these brain areas are not affected by order of removal or diurnal variation.


Assuntos
Anticorpos/imunologia , Ritmo Circadiano , Hipotálamo/química , Radioimunoensaio/métodos , beta-Endorfina/análise , Sequência de Aminoácidos , Animais , Reações Cruzadas , Humanos , Masculino , Dados de Sequência Molecular , Ratos , Ratos Endogâmicos Lew , Estresse Psicológico/metabolismo , beta-Endorfina/imunologia
15.
Neuroreport ; 17(9): 913-6, 2006 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-16738487

RESUMO

The Nogo system has recently been implicated not only in regeneration but also in modulating plasticity. One reason for declining memory functions in aging may be altered plasticity in the aged hippocampus and cortex cerebri. Therefore, we have examined the levels of mRNA encoding Nogo, OMgp and MAG, as well as the receptor components NgR, Lingo-1 and Troy in cortex and hippocampus of young (4 months), middle aged (16 months) and old (24 months) Fisher 344 rats. No significant changes of receptor components or the ligands OMgp or MAG were observed. Nogo mRNA, however, was significantly decreased in hippocampal subregions of aged animals. The specific decrease of Nogo mRNA levels in hippocampus and possibly cortex cerebri may relate to age-dependent decline of brain plasticity.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas da Mielina/metabolismo , Fatores Etários , Envelhecimento/genética , Animais , Encéfalo/anatomia & histologia , Proteínas Ligadas por GPI , Hibridização In Situ/métodos , Masculino , Proteínas da Mielina/genética , Glicoproteína Associada a Mielina/genética , Glicoproteína Associada a Mielina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nogo , Receptor Nogo 1 , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores de Superfície Celular , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo
16.
Behav Brain Res ; 167(1): 1-8, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16343654

RESUMO

This study assessed the effects of intermittent individual housing on behaviour and brain neurotrophins, and whether physical exercise could influence alternate individual-housing-induced effects. Five-week-old BALB/c mice were either housed in enhanced social (E) or standard social (S) housing conditions for 2 weeks. Thereafter they were divided into six groups and for 6 weeks remained in the following experimental conditions: Control groups remained in their respective housing conditions (E-control, S-control); enhanced individual (E-individual) and standard individual (S-individual) groups were exposed every other day to individual cages without running-wheels; enhanced running-wheel (E-wheel) and standard running-wheel (S-wheel) groups were put on alternate days in individual running-wheel cages. Animals were assessed for activity in an automated individual cage system (LABORAS) and brain neurotrophins analysed. Intermittent individual housing increased behavioural activity and reduced nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) levels in frontal cortex; while it increased BDNF level in the amygdala and BDNF protein and mRNA in hippocampus. Besides normalizing motor activity and regulating BDNF and NGF levels in hippocampus, amygdala and cerebellum, physical exercise did not attenuate reduction of cortical NGF and BDNF induced by intermittent individual housing. This study demonstrates that alternate individual housing has significant impact on behaviour and brain neurotrophin levels in mice, which can be partially altered by voluntary physical exercise. Our results also suggest that some changes in neurotrophin levels induced by intermittent individual housing are not similar to those caused by continuous individual housing.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Fatores de Crescimento Neural/metabolismo , Condicionamento Físico Animal/fisiologia , Isolamento Social , Análise de Variância , Animais , Encéfalo/anatomia & histologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Hibridização In Situ/métodos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/genética , Corrida/fisiologia
17.
PLoS One ; 11(10): e0165071, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27764188

RESUMO

Stress, such as social isolation, is a well-known risk factor for depression, most probably in combination with predisposing genetic factors. Physical exercise on the other hand, is depicted as a wonder-treatment that makes you healthier, happier and live longer. However, the published results on the effects of exercise are ambiguous, especially when it comes to neuropsychiatric disorders. Here we combine a paradigm of social isolation with a genetic rat model of depression, the Flinders Sensitive Line (FSL), already known to have glutamatergic synaptic alterations. Compared to group-housed FSL rats, we found that social isolation further affects synaptic plasticity and increases basal synaptic transmission in hippocampal CA1 pyramidal neurons. These functional synaptic alterations co-exist with changes in hippocampal protein expression levels: social isolation in FSL rats reduce expression of the glial glutamate transporter GLT-1, and increase expression of the GluA2 AMPA-receptor subunit. We further show that physical exercise in form of voluntary running prevents the stress-induced synaptic effects but do not restore the endogenous mechanisms of depression already present in the FSL rat.


Assuntos
Depressão/fisiopatologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Isolamento Social/psicologia , Sinapses/fisiologia , Animais , Comportamento Animal , Depressão/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Masculino , Plasticidade Neuronal , Ratos , Corrida , Sinapses/metabolismo , Transmissão Sináptica
18.
J Neurosci ; 22(18): 8133-8, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12223567

RESUMO

DeltaFosB is a transcription factor that accumulates in a region-specific manner in the brain after chronic perturbations. For example, repeated administration of drugs of abuse increases levels of DeltaFosB in the striatum. In the present study, we analyzed the effect of spontaneous wheel running, as a model for a natural rewarding behavior, on levels of DeltaFosB in striatal regions. Moreover, mice that inducibly overexpress DeltaFosB in specific subpopulations of striatal neurons were used to study the possible role of DeltaFosB on running behavior. Lewis rats given ad libitum access to running wheels for 30 d covered what would correspond to approximately 10 km/d and showed increased levels of DeltaFosB in the nucleus accumbens compared with rats exposed to locked running wheels. Mice that overexpress DeltaFosB selectively in striatal dynorphin-containing neurons increased their daily running compared with control littermates, whereas mice that overexpress DeltaFosB predominantly in striatal enkephalin-containing neurons ran considerably less than controls. Data from the present study demonstrate that like drugs of abuse, voluntary running increases levels of DeltaFosB in brain reward pathways. Furthermore, overexpression of DeltaFosB in a distinct striatal output neuronal population increases running behavior. Because previous work has shown that DeltaFosB overexpression within this same neuronal population increases the rewarding properties of drugs of abuse, results of the present study suggest that DeltaFosB may play a key role in controlling both natural and drug-induced reward.


Assuntos
Corpo Estriado/metabolismo , Atividade Motora/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Comportamento Animal , Núcleo Caudado/citologia , Núcleo Caudado/metabolismo , Contagem de Células , Corpo Estriado/citologia , Doxiciclina/farmacologia , Dinorfinas/genética , Dinorfinas/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Putamen/citologia , Putamen/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos Lew , Recompensa
19.
Neuroreport ; 16(13): 1419-22, 2005 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16110262

RESUMO

In this study, we analyzed how intermittent individual housing with or without a running wheel influenced corticosterone levels and survival of newly proliferated cells in the dentate gyrus of the hippocampus. Female Balb/c mice, in standard or enhanced housing, were divided into groups that were individually housed with or without running wheels on every second day. Intermittent individual housing without, but not with, running wheels increased survival of proliferated cells in the dentate gyrus as compared with continuous group housing in standard or enhanced conditions. Thus, changes in housing conditions on every second day can, under certain circumstances, have an impact on the survival of newly proliferated cells in the dentate gyrus.


Assuntos
Giro Denteado/citologia , Giro Denteado/fisiologia , Planejamento Ambiental , Abrigo para Animais , Condicionamento Físico Animal , Animais , Bromodesoxiuridina/metabolismo , Divisão Celular/fisiologia , Sobrevivência Celular/fisiologia , Corticosterona/sangue , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Atividade Motora/fisiologia , Neurônios/citologia , Neurônios/metabolismo
20.
J Appl Anim Welf Sci ; 8(3): 157-73, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16468945

RESUMO

Physical cage enrichment--exercise devices for rodents in the laboratory--often includes running wheels. This study compared responses of mice in enriched physical and social conditions and in standard social conditions to wheel running, individual housing, and open-field test. The study divided into 6 groups, 48 female BALB/c mice group housed in enriched and standard conditions. On alternate days, the study exposed 2 groups to individual running wheel cages. It intermittently separated from their cage mates and housed individually 2 groups with no running wheels; 2 control groups remained in enriched or standard condition cages. There were no significant differences between enriched and standard group housed mice in alternate days' wheel running. Over time, enriched, group housed mice ran less. Both groups responded similarly to individual housing. In open-field test, mice exposed to individual housing without running wheel moved more and faster than wheel running and home cage control mice. They have lower body weights than group housed and wheel running mice. Intermittent withdrawal of individual housing affects the animals more than other commodities. Wheel running normalizes some effects of intermittent separation from the enriched, social home cage.


Assuntos
Bem-Estar do Animal , Comportamento Animal , Abrigo para Animais/normas , Camundongos/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Animais de Laboratório , Teste de Esforço/métodos , Teste de Esforço/normas , Teste de Esforço/veterinária , Comportamento Exploratório , Feminino , Relações Interpessoais , Camundongos/psicologia , Camundongos Endogâmicos BALB C , Atividade Motora , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/psicologia , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA