Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(6): E679-88, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26792522

RESUMO

Collective cell responses to exogenous cues depend on cell-cell interactions. In principle, these can result in enhanced sensitivity to weak and noisy stimuli. However, this has not yet been shown experimentally, and little is known about how multicellular signal processing modulates single-cell sensitivity to extracellular signaling inputs, including those guiding complex changes in the tissue form and function. Here we explored whether cell-cell communication can enhance the ability of cell ensembles to sense and respond to weak gradients of chemotactic cues. Using a combination of experiments with mammary epithelial cells and mathematical modeling, we find that multicellular sensing enables detection of and response to shallow epidermal growth factor (EGF) gradients that are undetectable by single cells. However, the advantage of this type of gradient sensing is limited by the noisiness of the signaling relay, necessary to integrate spatially distributed ligand concentration information. We calculate the fundamental sensory limits imposed by this communication noise and combine them with the experimental data to estimate the effective size of multicellular sensory groups involved in gradient sensing. Functional experiments strongly implicated intercellular communication through gap junctions and calcium release from intracellular stores as mediators of collective gradient sensing. The resulting integrative analysis provides a framework for understanding the advantages and limitations of sensory information processing by relays of chemically coupled cells.


Assuntos
Comunicação Celular , Morfogênese , Animais , Caderinas/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Simulação por Computador , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Feminino , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Íons , Ligantes , Glândulas Mamárias Animais/citologia , Modelos Biológicos , Morfogênese/efeitos dos fármacos , Organoides/citologia , Organoides/efeitos dos fármacos , Ratos , Fatores de Tempo
2.
Bull Math Biol ; 75(8): 1400-16, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23417627

RESUMO

Tunneling nanotubes (TNTs) have previosly been observed as long and thin transient structures forming between cells and intercellular protein transfer through them has been experimentally verified. It is hypothesized that this may be a physiologically important means of cell-cell communication. This paper attempts to give a simple model for the rates of transfer of molecules across these TNTs at different distances. We describe the transfer of both cytosolic and membrane bound molecules between neighboring populations of cells and argue how the lifetime of the TNT, the diffusion rate, distance between cells, and the size of the molecules may affect their transfer. The model described makes certain predictions and opens a number of questions to be explored experimentally.


Assuntos
Comunicação Celular/fisiologia , Modelos Biológicos , Nanotubos , Animais , Humanos , Conceitos Matemáticos , Proteínas de Membrana/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA