Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 611(7937): 721-726, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108675

RESUMO

Small-ring cage hydrocarbons are popular bioisosteres (molecular replacements) for commonly found para-substituted benzene rings in drug design1. The utility of these cage structures derives from their superior pharmacokinetic properties compared with their parent aromatics, including improved solubility and reduced susceptibility to metabolism2,3. A prime example is the bicyclo[1.1.1]pentane motif, which is mainly synthesized by ring-opening of the interbridgehead bond of the strained hydrocarbon [1.1.1]propellane with radicals or anions4. By contrast, scaffolds mimicking meta-substituted arenes are lacking because of the challenge of synthesizing saturated isosteres that accurately reproduce substituent vectors5. Here we show that bicyclo[3.1.1]heptanes (BCHeps), which are hydrocarbons for which the bridgehead substituents map precisely onto the geometry of meta-substituted benzenes, can be conveniently accessed from [3.1.1]propellane. We found that [3.1.1]propellane can be synthesized on a multigram scale, and readily undergoes a range of radical-based transformations to generate medicinally relevant carbon- and heteroatom-substituted BCHeps, including pharmaceutical analogues. Comparison of the absorption, distribution, metabolism and excretion (ADME) properties of these analogues reveals enhanced metabolic stability relative to their parent arene-containing drugs, validating the potential of this meta-arene analogue as an sp3-rich motif in drug design. Collectively, our results show that BCHeps can be prepared on useful scales using a variety of methods, offering a new surrogate for meta-substituted benzene rings for implementation in drug discovery programmes.


Assuntos
Compostos Bicíclicos com Pontes , Desenho de Fármacos , Heptanos , Ânions/química , Benzeno/química , Compostos Bicíclicos com Pontes/síntese química , Compostos Bicíclicos com Pontes/química , Descoberta de Drogas , Heptanos/síntese química , Heptanos/química , Pentanos/síntese química , Pentanos/química , Solubilidade
2.
Mol Cell Proteomics ; 22(8): 100609, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37385347

RESUMO

Dampening functional levels of the mitochondrial deubiquitylating enzyme Ubiquitin-specific protease 30 (USP30) has been suggested as an effective therapeutic strategy against neurodegenerative disorders such as Parkinson's Disease. USP30 inhibition may counteract the deleterious effects of impaired turnover of damaged mitochondria, which is inherent to both familial and sporadic forms of the disease. Small-molecule inhibitors targeting USP30 are currently in development, but little is known about their precise nature of binding to the protein. We have integrated biochemical and structural approaches to gain novel mechanistic insights into USP30 inhibition by a small-molecule benzosulfonamide-containing compound, USP30inh. Activity-based protein profiling mass spectrometry confirmed target engagement, high selectivity, and potency of USP30inh for USP30 against 49 other deubiquitylating enzymes in a neuroblastoma cell line. In vitro characterization of USP30inh enzyme kinetics inferred slow and tight binding behavior, which is comparable with features of covalent modification of USP30. Finally, we blended hydrogen-deuterium exchange mass spectrometry and computational docking to elucidate the molecular architecture and geometry of USP30 complex formation with USP30inh, identifying structural rearrangements at the cleft of the USP30 thumb and palm subdomains. These studies suggest that USP30inh binds to this thumb-palm cleft, which guides the ubiquitin C terminus into the active site, thereby preventing ubiquitin binding and isopeptide bond cleavage, and confirming its importance in the inhibitory process. Our data will pave the way for the design and development of next-generation inhibitors targeting USP30 and associated deubiquitinylases.


Assuntos
Enzimas Desubiquitinantes , Mitofagia , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sulfonamidas/farmacologia
3.
J Biol Chem ; 299(12): 105382, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866628

RESUMO

Proteomic studies have identified moesin (MSN), a protein containing a four-point-one, ezrin, radixin, moesin (FERM) domain, and the receptor CD44 as hub proteins found within a coexpression module strongly linked to Alzheimer's disease (AD) traits and microglia. These proteins are more abundant in Alzheimer's patient brains, and their levels are positively correlated with cognitive decline, amyloid plaque deposition, and neurofibrillary tangle burden. The MSN FERM domain interacts with the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) and the cytoplasmic tail of CD44. Inhibiting the MSN-CD44 interaction may help limit AD-associated neuronal damage. Here, we investigated the feasibility of developing inhibitors that target this protein-protein interaction. We have employed structural, mutational, and phage-display studies to examine how CD44 binds to the FERM domain of MSN. Interestingly, we have identified an allosteric site located close to the PIP2 binding pocket that influences CD44 binding. These findings suggest a mechanism in which PIP2 binding to the FERM domain stimulates CD44 binding through an allosteric effect, leading to the formation of a neighboring pocket capable of accommodating a receptor tail. Furthermore, high-throughput screening of a chemical library identified two compounds that disrupt the MSN-CD44 interaction. One compound series was further optimized for biochemical activity, specificity, and solubility. Our results suggest that the FERM domain holds potential as a drug development target. Small molecule preliminary leads generated from this study could serve as a foundation for additional medicinal chemistry efforts with the goal of controlling microglial activity in AD by modifying the MSN-CD44 interaction.


Assuntos
Doença de Alzheimer , Ligação Proteica , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Domínios FERM , Receptores de Hialuronatos/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteômica
4.
J Biol Chem ; 296: 100521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33684443

RESUMO

The human dedicator of cytokinesis (DOCK) family consists of 11 structurally conserved proteins that serve as atypical RHO guanine nucleotide exchange factors (RHO GEFs). These regulatory proteins act as mediators in numerous cellular cascades that promote cytoskeletal remodeling, playing roles in various crucial processes such as differentiation, migration, polarization, and axon growth in neurons. At the molecular level, DOCK DHR2 domains facilitate nucleotide dissociation from small GTPases, a process that is otherwise too slow for rapid spatiotemporal control of cellular signaling. Here, we provide an overview of the biological and structural characteristics for the various DOCK proteins and describe how they differ from other RHO GEFs and between DOCK subfamilies. The expression of the family varies depending on cell or tissue type, and they are consequently implicated in a broad range of disease phenotypes, particularly in the brain. A growing body of available structural information reveals the mechanism by which the catalytic DHR2 domain elicits nucleotide dissociation and also indicates strategies for the discovery and design of high-affinity small-molecule inhibitors. Such compounds could serve as chemical probes to interrogate the cellular function and provide starting points for drug discovery of this important class of enzymes.


Assuntos
Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Domínio Catalítico , GTP Fosfo-Hidrolases/metabolismo , Conformação Proteica , Fatores de Troca de Nucleotídeo Guanina Rho/química
5.
Biol Chem ; 403(4): 391-402, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35191283

RESUMO

Ubiquitination is a key regulatory mechanism vital for maintenance of cellular homeostasis. Protein degradation is induced by E3 ligases via attachment of ubiquitin chains to substrates. Pharmacological exploitation of this phenomenon via targeted protein degradation (TPD) can be achieved with molecular glues or bifunctional molecules facilitating the formation of ternary complexes between an E3 ligase and a given protein of interest (POI), resulting in ubiquitination of the substrate and subsequent proteolysis by the proteasome. Recently, the development of novel covalent fragment screening approaches has enabled the identification of first-in-class ligands for E3 ligases and deubiquitinases revealing so far unexplored binding sites which highlights the potential of these methods to uncover and expand druggable space for new target classes.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Ligantes , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
J Biol Chem ; 295(52): 17973-17985, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33028632

RESUMO

The molecular mechanisms of reduced frataxin (FXN) expression in Friedreich's ataxia (FRDA) are linked to epigenetic modification of the FXN locus caused by the disease-associated GAA expansion. Here, we identify that SUV4-20 histone methyltransferases, specifically SUV4-20 H1, play an important role in the regulation of FXN expression and represent a novel therapeutic target. Using a human FXN-GAA-Luciferase repeat expansion genomic DNA reporter model of FRDA, we screened the Structural Genomics Consortium epigenetic probe collection. We found that pharmacological inhibition of the SUV4-20 methyltransferases by the tool compound A-196 increased the expression of FXN by ∼1.5-fold in the reporter cell line. In several FRDA cell lines and patient-derived primary peripheral blood mononuclear cells, A-196 increased FXN expression by up to 2-fold, an effect not seen in WT cells. SUV4-20 inhibition was accompanied by a reduction in H4K20me2 and H4K20me3 and an increase in H4K20me1, but only modest (1.4-7.8%) perturbation in genome-wide expression was observed. Finally, based on the structural activity relationship and crystal structure of A-196, novel small molecule A-196 analogs were synthesized and shown to give a 20-fold increase in potency for increasing FXN expression. Overall, our results suggest that histone methylation is important in the regulation of FXN expression and highlight SUV4-20 H1 as a potential novel therapeutic target for FRDA.


Assuntos
Metilação de DNA , Epigênese Genética , Fibroblastos/patologia , Ataxia de Friedreich/patologia , Inativação Gênica , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Proteínas de Ligação ao Ferro/metabolismo , Estudos de Casos e Controles , Fibroblastos/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Heterocromatina , Humanos , Proteínas de Ligação ao Ferro/antagonistas & inibidores , Proteínas de Ligação ao Ferro/genética , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Frataxina
7.
Angew Chem Int Ed Engl ; 59(16): 6342-6366, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30869179

RESUMO

The Ras superfamily of small GTPases are guanine-nucleotide-dependent switches essential for numerous cellular processes. Mutations or dysregulation of these proteins are associated with many diseases, but unsuccessful attempts to target the small GTPases directly have resulted in them being classed as "undruggable". The GTP-dependent signaling of these proteins is controlled by their regulators; guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in the Rho and Rab subfamilies, guanine nucleotide dissociation inhibitors (GDIs). This review covers the recent small molecule and biologics strategies to target the small GTPases through their regulators. It seeks to critically re-evaluate recent chemical biology practice, such as the presence of PAINs motifs and the cell-based readout using compounds that are weakly potent or of unknown specificity. It highlights the vast scope of potential approaches for targeting the small GTPases in the future through their regulatory proteins.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Dinâmica Molecular , Proteínas Monoméricas de Ligação ao GTP/antagonistas & inibidores , Proteínas Monoméricas de Ligação ao GTP/classificação , Peptídeos/química , Peptídeos/metabolismo , Filogenia , Ligação Proteica , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade
8.
J Am Chem Soc ; 141(22): 8951-8968, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31060360

RESUMO

Covalent probes can display unmatched potency, selectivity, and duration of action; however, their discovery is challenging. In principle, fragments that can irreversibly bind their target can overcome the low affinity that limits reversible fragment screening, but such electrophilic fragments were considered nonselective and were rarely screened. We hypothesized that mild electrophiles might overcome the selectivity challenge and constructed a library of 993 mildly electrophilic fragments. We characterized this library by a new high-throughput thiol-reactivity assay and screened them against 10 cysteine-containing proteins. Highly reactive and promiscuous fragments were rare and could be easily eliminated. In contrast, we found hits for most targets. Combining our approach with high-throughput crystallography allowed rapid progression to potent and selective probes for two enzymes, the deubiquitinase OTUB2 and the pyrophosphatase NUDT7. No inhibitors were previously known for either. This study highlights the potential of electrophile-fragment screening as a practical and efficient tool for covalent-ligand discovery.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Elétrons , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Peso Molecular , Conformação Proteica , Fatores de Tempo
9.
Angew Chem Int Ed Engl ; 58(4): 1007-1012, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30589164

RESUMO

Bromodomain-containing proteins are epigenetic modulators involved in a wide range of cellular processes, from recruitment of transcription factors to pathological disruption of gene regulation and cancer development. Since the druggability of these acetyl-lysine reader domains was established, efforts were made to develop potent and selective inhibitors across the entire family. Here we report the development of a small molecule-based approach to covalently modify recombinant and endogenous bromodomain-containing proteins by targeting a conserved lysine and a tyrosine residue in the variable ZA or BC loops. Moreover, the addition of a reporter tag allowed in-gel visualization and pull-down of the desired bromodomains.


Assuntos
Carbamatos/química , Histonas/química , Lisina/química , Domínios Proteicos , Piridazinas/química , Triazóis/química , Acetilação , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Simulação de Acoplamento Molecular , Ligação Proteica
10.
Angew Chem Int Ed Engl ; 58(2): 515-519, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30431220

RESUMO

Histone lysine demethylases (KDMs) are involved in the dynamic regulation of gene expression and they play a critical role in several biological processes. Achieving selectivity over the different KDMs has been a major challenge for KDM inhibitor development. Here we report potent and selective KDM5 covalent inhibitors designed to target cysteine residues only present in the KDM5 sub-family. The covalent binding to the targeted proteins was confirmed by MS and time-dependent inhibition. Additional competition assays show that compounds were non 2-OG competitive. Target engagement and ChIP-seq analysis showed that the compounds inhibited the KDM5 members in cells at nano- to micromolar levels and induce a global increase of the H3K4me3 mark at transcriptional start sites.

11.
Nat Chem Biol ; 12(7): 539-45, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27214403

RESUMO

Members of the KDM5 (also known as JARID1) family are 2-oxoglutarate- and Fe(2+)-dependent oxygenases that act as histone H3K4 demethylases, thereby regulating cell proliferation and stem cell self-renewal and differentiation. Here we report crystal structures of the catalytic core of the human KDM5B enzyme in complex with three inhibitor chemotypes. These scaffolds exploit several aspects of the KDM5 active site, and their selectivity profiles reflect their hybrid features with respect to the KDM4 and KDM6 families. Whereas GSK-J1, a previously identified KDM6 inhibitor, showed about sevenfold less inhibitory activity toward KDM5B than toward KDM6 proteins, KDM5-C49 displayed 25-100-fold selectivity between KDM5B and KDM6B. The cell-permeable derivative KDM5-C70 had an antiproliferative effect in myeloma cells, leading to genome-wide elevation of H3K4me3 levels. The selective inhibitor GSK467 exploited unique binding modes, but it lacked cellular potency in the myeloma system. Taken together, these structural leads deliver multiple starting points for further rational and selective inhibitor design.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Histona Desmetilases/metabolismo , Humanos , Modelos Moleculares , Mieloma Múltiplo/patologia , Conformação Proteica , Relação Estrutura-Atividade
12.
J Org Chem ; 83(16): 9510-9516, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29932332

RESUMO

Sulfonimidamides are an emerging bioisosteric replacement in medicinal chemistry projects, and therefore new chemistries are necessary to access this functionality. The general synthesis of CF3-sulfonimidamides from an activated bench-stable transfer reagent is described. A diverse reaction scope is demonstrated, with a wide range of nucleophilic amines being tolerated in this transformation. The CF3-sulfonimidamides obtained contain an additional diversity point, in the form a protected imine, that could be unmasked to allow late stage modifications.

13.
Bioorg Med Chem ; 26(11): 2965-2972, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29567296

RESUMO

The polyadenosine-diphosphate-ribose polymerase 14 (PARP14) has been implicated in DNA damage response pathways for homologous recombination. PARP14 contains three (ADP ribose binding) macrodomains (MD) whose exact contribution to overall PARP14 function in pathology remains unclear. A medium throughput screen led to the identification of N-(2(-9H-carbazol-1-yl)phenyl)acetamide (GeA-69, 1) as a novel allosteric PARP14 MD2 (second MD of PARP14) inhibitor. We herein report medicinal chemistry around this novel chemotype to afford a sub-micromolar PARP14 MD2 inhibitor. This chemical series provides a novel starting point for further development of PARP14 chemical probes.


Assuntos
Cisteína Endopeptidases/química , Descoberta de Drogas , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Poli(ADP-Ribose) Polimerases/química , Regulação Alostérica , Carbazóis/química , Humanos , Concentração Inibidora 50 , Modelos Biológicos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/efeitos dos fármacos , Relação Estrutura-Atividade
14.
Proc Natl Acad Sci U S A ; 112(34): 10768-73, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26261308

RESUMO

Th17 responses are critical to a variety of human autoimmune diseases, and therapeutic targeting with monoclonal antibodies against IL-17 and IL-23 has shown considerable promise. Here, we report data to support selective bromodomain blockade of the transcriptional coactivators CBP (CREB binding protein) and p300 as an alternative approach to inhibit human Th17 responses. We show that CBP30 has marked molecular specificity for the bromodomains of CBP and p300, compared with 43 other bromodomains. In unbiased cellular testing on a diverse panel of cultured primary human cells, CBP30 reduced immune cell production of IL-17A and other proinflammatory cytokines. CBP30 also inhibited IL-17A secretion by Th17 cells from healthy donors and patients with ankylosing spondylitis and psoriatic arthritis. Transcriptional profiling of human T cells after CBP30 treatment showed a much more restricted effect on gene expression than that observed with the pan-BET (bromo and extraterminal domain protein family) bromodomain inhibitor JQ1. This selective targeting of the CBP/p300 bromodomain by CBP30 will potentially lead to fewer side effects than with the broadly acting epigenetic inhibitors currently in clinical trials.


Assuntos
Benzimidazóis/farmacologia , Imunossupressores/farmacologia , Interleucina-17/metabolismo , Isoxazóis/farmacologia , Células Th17/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Adulto , Idoso , Artrite Psoriásica/metabolismo , Artrite Psoriásica/patologia , Azepinas/farmacologia , Benzimidazóis/química , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Calorimetria , Células Cultivadas , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunossupressores/química , Interleucina-17/biossíntese , Interleucina-17/genética , Isoxazóis/química , Cinética , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Estrutura Terciária de Proteína/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Espondilite Anquilosante/metabolismo , Espondilite Anquilosante/patologia , Relação Estrutura-Atividade , Células Th17/imunologia , Triazóis/farmacologia
15.
Angew Chem Int Ed Engl ; 57(50): 16302-16307, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30288907

RESUMO

YEATS domain (YD) containing proteins are an emerging class of epigenetic targets in drug discovery. Dysregulation of these modified lysine-binding proteins has been linked to the onset and progression of cancers. We herein report the discovery and characterisation of the first small-molecule chemical probe, SGC-iMLLT, for the YD of MLLT1 (ENL/YEATS1) and MLLT3 (AF9/YEATS3). SGC-iMLLT is a potent and selective inhibitor of MLLT1/3-histone interactions. Excellent selectivity over other human YD proteins (YEATS2/4) and bromodomains was observed. Furthermore, our probe displays cellular target engagement of MLLT1 and MLLT3. The first small-molecule X-ray co-crystal structures with the MLLT1 YD are also reported. This first-in-class probe molecule can be used to understand MLLT1/3-associated biology and the therapeutic potential of small-molecule YD inhibitors.


Assuntos
Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Bibliotecas de Moléculas Pequenas/química , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Cristalografia por Raios X , Histonas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Domínios Proteicos , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/metabolismo
16.
Angew Chem Int Ed Engl ; 56(49): 15555-15559, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28976073

RESUMO

Histone lysine demethylases (KDMs) are of critical importance in the epigenetic regulation of gene expression, yet there are few selective, cell-permeable inhibitors or suitable tool compounds for these enzymes. We describe the discovery of a new class of inhibitor that is highly potent towards the histone lysine demethylases KDM2A/7A. A modular synthetic approach was used to explore the chemical space and accelerate the investigation of key structure-activity relationships, leading to the development of a small molecule with around 75-fold selectivity towards KDM2A/7A versus other KDMs, as well as cellular activity at low micromolar concentrations.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Proteínas F-Box/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Proteínas F-Box/metabolismo , Células HeLa , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
17.
Angew Chem Int Ed Engl ; 56(3): 827-831, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27966810

RESUMO

The p300/CBP-associated factor (PCAF) and related GCN5 bromodomain-containing lysine acetyl transferases are members of subfamily I of the bromodomain phylogenetic tree. Iterative cycles of rational inhibitor design and biophysical characterization led to the discovery of the triazolopthalazine-based L-45 (dubbed L-Moses) as the first potent, selective, and cell-active PCAF bromodomain (Brd) inhibitor. Synthesis from readily available (1R,2S)-(-)-norephedrine furnished L-45 in enantiopure form. L-45 was shown to disrupt PCAF-Brd histone H3.3 interaction in cells using a nanoBRET assay, and a co-crystal structure of L-45 with the homologous Brd PfGCN5 from Plasmodium falciparum rationalizes the high selectivity for PCAF and GCN5 bromodomains. Compound L-45 shows no observable cytotoxicity in peripheral blood mononuclear cells (PBMC), good cell-permeability, and metabolic stability in human and mouse liver microsomes, supporting its potential for in vivo use.


Assuntos
Compostos Azo/farmacologia , Descoberta de Drogas , Hidralazina/farmacologia , Sondas Moleculares/farmacologia , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Compostos Azo/síntese química , Compostos Azo/química , Relação Dose-Resposta a Droga , Hidralazina/síntese química , Hidralazina/química , Sondas Moleculares/síntese química , Sondas Moleculares/química , Estrutura Molecular , Relação Estrutura-Atividade
18.
Drug Discov Today Technol ; 19: 73-80, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27769361

RESUMO

The bromodomain family of proteins are 'readers' of acetylated lysines of histones, a key mark in the epigenetic code of gene regulation. Without high quality chemical probes with which to study these proteins, their biological function, and potential use in therapeutics, remains unknown. Recently, a number of chemical ligands were reported for the previously unprobed bromodomain proteins BRD7 and BRD9. Herein the development and characterisation of probes against these proteins is detailed, including the preliminary biological activity of BRD7 and BRD9 assessed using these probes. Future studies utilising these chemically-diverse compounds in parallel will allow for a confident assessment of the role of BRD7/9, and give multiple entry points into any subsequent pharmaceutical programs.


Assuntos
Proteínas Cromossômicas não Histona/química , Domínios Proteicos , Fatores de Transcrição/química , Animais , Proteínas Cromossômicas não Histona/metabolismo , Desenho de Fármacos , Humanos , Ligantes , Fatores de Transcrição/metabolismo
19.
Proc Natl Acad Sci U S A ; 110(49): 19754-9, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24248379

RESUMO

Bromodomains have emerged as attractive candidates for the development of inhibitors targeting gene transcription. Inhibitors of the bromo and extraterminal (BET) family recently showed promising activity in diverse disease models. However, the pleiotropic nature of BET proteins regulating tissue-specific transcription has raised safety concerns and suggested that attempts should be made for domain-specific targeting. Here, we report that RVX-208, a compound currently in phase II clinical trials, is a BET bromodomain inhibitor specific for second bromodomains (BD2s). Cocrystal structures revealed binding modes of RVX-208 and its synthetic precursor, and fluorescent recovery after photobleaching demonstrated that RVX-208 displaces BET proteins from chromatin. However, gene-expression data showed that BD2 inhibition only modestly affects BET-dependent gene transcription. Our data demonstrate the feasibility of specific targeting within the BET family resulting in different transcriptional outcomes and highlight the importance of BD1 in transcriptional regulation.


Assuntos
Modelos Moleculares , Quinazolinas/química , Quinazolinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Cristalização , Recuperação de Fluorescência Após Fotodegradação , Células Hep G2 , Humanos , Estrutura Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Estrutura Terciária de Proteína/fisiologia , Quinazolinonas
20.
Angew Chem Int Ed Engl ; 54(21): 6217-21, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25864491

RESUMO

The bromodomain-containing proteins BRD9 and BRD7 are part of the human SWI/SNF chromatin-remodeling complexes BAF and PBAF. To date, no selective inhibitor for BRD7/9 has been reported despite its potential value as a biological tool or as a lead for future therapeutics. The quinolone-fused lactam LP99 is now reported as the first potent and selective inhibitor of the BRD7 and BRD9 bromodomains. Development of LP99 from a fragment hit was expedited through balancing structure-based inhibitor design and biophysical characterization against tractable chemical synthesis: Complexity-building nitro-Mannich/lactamization cascade processes allowed for early structure-activity relationship studies whereas an enantioselective organocatalytic nitro-Mannich reaction enabled the synthesis of the lead scaffold in enantioenriched form and on scale. This epigenetic probe was shown to inhibit the association of BRD7 and BRD9 to acetylated histones in vitro and in cells. Moreover, LP99 was used to demonstrate that BRD7/9 plays a role in regulating pro-inflammatory cytokine secretion.


Assuntos
Proteínas Cromossômicas não Histona/antagonistas & inibidores , Descoberta de Drogas , Lactamas/química , Lactamas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Modelos Moleculares , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA