Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Water Sci Technol ; 69(2): 350-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24473305

RESUMO

Three pilot-scale duckweed pond (DP) wastewater treatment systems were designed and operated to examine the effect of aeration and effluent recycling on treatment efficiency. Each system consisted of two DPs in series fed by pre-settled domestic sewage. The first system (duckweed+ conventional treatment) was 'natural' and included only duckweed plants. The second system (duckweed aeration) included aeration in the second pond. The third system (duckweed+ aeration+ circulation) included aeration in the second pond and effluent recycling from the second to the first pond. All three systems demonstrated similarly efficient removal of organic matter and nutrients. Supplemental aeration had no effect on either dissolved oxygen levels or on pollutant removal efficiencies. Although recycling had almost no influence on nutrient removal efficiencies, it had a positive impact on chemical oxygen demand and total suspended solids removals due to equalization of load and pH, which suppressed algae growth. Recycling also improved the appearance and growth rate of the duckweed plants, especially during heavy wastewater loads.


Assuntos
Araceae/metabolismo , Lagoas , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental
2.
Chemosphere ; 283: 131194, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34467943

RESUMO

The COVID-19 pandemic created a global crisis impacting not only healthcare systems, but also economics and society. Therefore, it is important to find novel methods for monitoring disease activity. Recent data have indicated that fecal shedding of SARS-CoV-2 is common, and that viral RNA can be detected in wastewater. This suggests that wastewater monitoring is a potentially efficient tool for both epidemiological surveillance, and early warning for SARS-CoV-2 circulation at the population level. In this study we sampled an urban wastewater infrastructure in the city of Ashkelon (Ì´ 150,000 population), Israel, during the end of the first COVID-19 wave in May 2020 when the number of infections seemed to be waning. We were able to show varying presence of SARS-CoV-2 RNA in wastewater from several locations in the city during two sampling periods, before the resurgence was clinically apparent. This was expressed with a new index, Normalized Viral Load (NVL) which can be used in different area scales to define levels of virus activity such as red (high) or green (no), and to follow morbidity in the population at the tested area. The rise in viral load between the two sampling periods (one week apart) indicated an increase in morbidity that was evident two weeks to a month later in the population. Thus, this methodology may provide an early indication for SARS-CoV-2 infection outbreak in a population before an outbreak is clinically apparent.


Assuntos
COVID-19 , Esgotos , Humanos , Pandemias , RNA Viral , SARS-CoV-2 , Águas Residuárias
3.
Chemosphere ; 258: 127271, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32535444

RESUMO

Water and soil contamination by industrial wastes is a global concern. Biological treatment of industrial wastewater using bioreactors allows the removal of organic matter and nutrients and enables either reuse or safe discharge. Wastewater bioremediation depends in part on the microbial communities present in the bioreactor. To ascertain which communities may play a role in the remediation process, the present study investigates the microbial community structure and diversity of microorganisms found in a full-scale membrane bioreactor (MBR) for industrial wastewater treatment. The study was carried out using high-throughput data observations following a failure (crash) of the MBR and during the extended recovery of the process. Results revealed a positive correlation between the MBR's ability to remove organic matter and its microbial community richness. The significant changes in relative microbial abundance between crash and recovery periods of the MBR revealed the important role of specific bacterial genera in wastewater treatment processes. A whole-genome metagenomics based comparison showed a clear difference in microbial makeup between two functional periods of MBR activity. The crash period was characterized by abundance in bacteria belonging to Achromobacter, Acinetobacter, Halomonas, Pseudomonas and an uncultured MBAE14. The recovery period on the other hand was characterized by Aquamicrobium and by Wenzhouxiangella marina. Our study also revealed some interesting functional pathways characterizing the microbial communities from the two periods of bioreactor function, such as Nitrate and Sulfate reduction pathways. These differences indicate the connection between the bacterial diversity of the MBR and its efficiency to remove TOC.


Assuntos
Reatores Biológicos/microbiologia , Microbiota/efeitos dos fármacos , Águas Residuárias , Purificação da Água/métodos , Biodegradação Ambiental , Gammaproteobacteria/efeitos dos fármacos , Gammaproteobacteria/genética , Resíduos Industriais/análise , Membranas Artificiais , Metagenômica , Microbiota/genética , Esgotos/microbiologia , Águas Residuárias/química , Águas Residuárias/microbiologia
4.
Addiction ; 115(1): 109-120, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642141

RESUMO

BACKGROUND AND AIMS: Wastewater-based epidemiology is an additional indicator of drug use that is gaining reliability to complement the current established panel of indicators. The aims of this study were to: (i) assess spatial and temporal trends of population-normalized mass loads of benzoylecgonine, amphetamine, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) in raw wastewater over 7 years (2011-17); (ii) address overall drug use by estimating the average number of combined doses consumed per day in each city; and (iii) compare these with existing prevalence and seizure data. DESIGN: Analysis of daily raw wastewater composite samples collected over 1 week per year from 2011 to 2017. SETTING AND PARTICIPANTS: Catchment areas of 143 wastewater treatment plants in 120 cities in 37 countries. MEASUREMENTS: Parent substances (amphetamine, methamphetamine and MDMA) and the metabolites of cocaine (benzoylecgonine) and of Δ9 -tetrahydrocannabinol (11-nor-9-carboxy-Δ9 -tetrahydrocannabinol) were measured in wastewater using liquid chromatography-tandem mass spectrometry. Daily mass loads (mg/day) were normalized to catchment population (mg/1000 people/day) and converted to the number of combined doses consumed per day. Spatial differences were assessed world-wide, and temporal trends were discerned at European level by comparing 2011-13 drug loads versus 2014-17 loads. FINDINGS: Benzoylecgonine was the stimulant metabolite detected at higher loads in southern and western Europe, and amphetamine, MDMA and methamphetamine in East and North-Central Europe. In other continents, methamphetamine showed the highest levels in the United States and Australia and benzoylecgonine in South America. During the reporting period, benzoylecgonine loads increased in general across Europe, amphetamine and methamphetamine levels fluctuated and MDMA underwent an intermittent upsurge. CONCLUSIONS: The analysis of wastewater to quantify drug loads provides near real-time drug use estimates that globally correspond to prevalence and seizure data.


Assuntos
Monitoramento Ambiental/métodos , Drogas Ilícitas , Análise Espaço-Temporal , Detecção do Abuso de Substâncias/métodos , Águas Residuárias/química , Anfetamina/análise , Cromatografia Líquida , Cocaína/análogos & derivados , Cocaína/análise , Humanos , Internacionalidade , Metanfetamina/análise , N-Metil-3,4-Metilenodioxianfetamina/análise , Espectrometria de Massas em Tandem
5.
Water Res ; 43(1): 87-96, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19013631

RESUMO

The filtration of phi X 174, MS2, and T4 bacteriophages out of tap water and secondary effluents was performed by rapid sand filtration. The viruses were characterized, and the influence of their microscopic characteristics on filterability was examined by comparing retention values, residence times, attachment, and dispersion coefficients calculated from an advection-dispersion model and residence time variation. The only factor observed to influence retention was virus size, such that the larger the virus, the better the retention. The difference was due to the more effective transport of viruses inside the media, an observation that runs counter to currently accepted filtration theory. Cake formation on top of the filter during the initial stages of secondary effluent filtration significantly increased headloss, eventually resulting in shorter filtration cycles. However, deep filters contain buffering zones where the pressure drop is amortized, thus allowing for continued filtration. After the effluent passed through the buffer zone, regular filtration was observed, during which considerable virus retention was achieved.


Assuntos
Bacteriófagos/isolamento & purificação , Filtração/métodos , Dióxido de Silício , Eliminação de Resíduos Líquidos , Microbiologia da Água , Recuperação e Remediação Ambiental , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Nefelometria e Turbidimetria , Propriedades de Superfície , Fatores de Tempo , Abastecimento de Água
6.
Biodegradation ; 20(5): 621-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19205903

RESUMO

Halogenated organic compounds constitute one of the largest and most diverse groups of chemicals in the environment. Many of these compounds are toxic, persistent and, as a result of their often limited biodegradability, tend to bioaccumulate in the environment. Dibromoneopentyl glycol (DBNPG) and tribromoneopentyl alcohol (TBNPA) are brominated flame retardants commonly used as additives during the manufacture of plastic polymers and as chemical intermediates in the synthesis of other flame retardants. Both are classified as not readily biodegradable. In this paper, we demonstrate the biodegradation of both DBNPG and TBNPA by a common bacterial consortium under aerobic conditions in enrichment cultures containing yeast extract. DBNPG and TBNPA biodegradation is accompanied by a release of bromide into the medium, due to a biological debromination reaction. Molecular analysis of the clone library PCR amplified 16S rRNA gene was used to characterize the bacterial consortium involved in the biodegradation.


Assuntos
Retardadores de Chama/metabolismo , Propanóis/metabolismo , Propilenoglicóis/metabolismo , Aerobiose , Biodegradação Ambiental , Resíduos Industriais , Filogenia , RNA Ribossômico 16S/análise , Microbiologia do Solo
7.
FEMS Microbiol Ecol ; 66(2): 437-46, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18647354

RESUMO

The salinity of industrial wastewater evaporation ponds was artificially increased from 3-7% to 12-16% (w/v), in an attempt to reduce the activity of sulfate-reducing bacteria (SRB) and subsequent emission of H2S. To investigate the changes in bacterial diversity in general, and SRB in particular, following this salination, two sets of universal primers targeting the 16S rRNA gene and the functional apsA [adenosine-5'-phosphosulfate (APS) reductase alpha-subunit] gene of SRB were used. Phylogenetic analysis indicated that Proteobacteria was the most dominant phylum both before and after salination (with 52% and 68%, respectively), whereas Firmicutes was the second most dominant phylum before (39%) and after (19%) salination. Sequences belonging to Bacteroidetes, Spirochaetes and Actinobacteria were also found. Several groups of SRB from Proteobacteria and Firmicutes were also found to inhabit this saline environment. Comparison of bacterial diversity before and after salination of the ponds revealed both a shift in community composition and an increase in microbial diversity following salination. The share of SRB in the 16S rRNA gene was reduced following salination, consistent with the reduction of H2S emissions. However, the community composition, as shown by apsA gene analysis, was not markedly affected.


Assuntos
Bactérias/classificação , Resíduos Industriais , Cloreto de Sódio/farmacologia , Bactérias Redutoras de Enxofre/classificação , Eliminação de Resíduos Líquidos/métodos , Microbiologia da Água , Adenosina Fosfossulfato/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Dados de Sequência Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Bactérias Redutoras de Enxofre/efeitos dos fármacos , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento , Água/química
8.
Genes (Basel) ; 8(1)2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28106814

RESUMO

Bacteriophages are viruses that infect bacteria, and consequently they have a major impact on the development of a microbial population. In this study, the genome of a novel broad host range bacteriophage, Aquamicrobium phage P14, isolated from a wastewater treatment plant, was analyzed. The Aquamicrobium phage P14 was found to infect members of different Proteobacteria classes (Alphaproteobacteria and Betaproteobacteria). This phage contains a 40,551 bp long genome and 60% of its genes had blastx hits. Furthermore, the bacteriophage was found to share more than 50% of its genes with several podoviruses and has the same gene order as other polyvalent bacteriophages. The results obtained in this study led to the conclusion that indeed general features of the genome of the Aquamicrobium phage P14 are shared with other broad host range bacteriophages, however further analysis of the genome is needed in order to identify the specific mechanisms which enable the bacteriophage to infect both Alphaproteobacteria and Betaproteobacteria.

9.
Water Res ; 40(19): 3653-9, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16904720

RESUMO

The wastewater of the largest dairy factory in Israel (Tnuva, Tel-Yosef), discharging approximately 6000 tons BOD per year, is treated in two serial, deep reservoirs (anaerobic/facultative). In this study, which focused on the anaerobic reservoir, we combined in situ measurements (over 18 months) and supporting lab experiments, in order to evaluate its efficiency and to identify the rate-limiting step of the methanogenic fermentation pathway. The anaerobic reservoir could remove above 75% of the BOD and COD all year round, but this was not enough to prevent malodors during the winter. Acetate and propionate, products of lactose fermentation, were the predominant intermediate metabolites in the reservoir and their concentrations were strongly dependent on the temperature and the organic load. The combined effects of colder winter temperatures and seasonal increase of organic load, resulted in a decreased rate of propionate oxidation and a consequent accumulation of soluble BOD and COD. Laboratory batch experiments, conducted during this season, found propionate oxidation to be the rate-limiting step in the process, characterized by a lag period preceding its degradation.


Assuntos
Indústria de Laticínios , Metano/análise , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Anaerobiose , Fermentação , Metano/biossíntese , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo , Microbiologia da Água
10.
Bioresour Technol ; 197: 106-12, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318929

RESUMO

This study focuses on the stability and tolerance of continuous-flow bioreactors inoculated with anaerobic methanogens in three different configurations: (R1) dried granular biomass immobilized in PAC-enriched hydrophilic polyurethane foam, (R2) dried granular biomass, and (R3) wet granular biomass. These systems were tested under two different organic loading rates (OLR) of 6.25 and 10.94 (gCOD/(Lreactor∗d)), using a glucose-based synthetic mixture. The effect of an instantaneous shock load of phenol (5g/L for three days), and of phenol inclusion in the feed (0.5g/L) were also tested. At the lower OLR, all reactors performed similarly, however, increasing the OLR lead to a significant biomass washout and failure of R3. Biomass in R1 was more tolerant to phenol shock load than R2, though activity was recovered in both systems after about one month. PAC provided protection and shortened the adaptation time for 0.5g/L phenol that continuously was fed.


Assuntos
Biomassa , Reatores Biológicos/microbiologia , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/metabolismo , Fenol/farmacologia , Anaerobiose , Euryarchaeota , Poliuretanos
11.
Water Res ; 63: 42-51, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24981742

RESUMO

The main goal of this study was to test the effect of various drying methods of granular anaerobic biomass on biomass survival, potential and rate of methane re-production, and structure. This may facilitate the development of drying methods to preserve excess anaerobic biomass in dry form for re-inoculation of existing digesters after process failure or wash out or for the start-up of new digesters. To that end, anaerobic granular biomass was collected from an up-flow anaerobic sludge blanket (UASB) reactor. The biomass was dried using two alternative methods: oven with air circulation at 50 °C for 24 h (DAO), and vacuum rotary evaporator at anaerobic conditions (DAN). For comparison, the control was a biomass with no drying (WET). Biomass samples were tested for specific methanogenic activity using synthetic wastewater. The microbial communities were also tested for viability using the LIVE/DEAD kit, and total biomass was initially quantified by qPCR targeting 16S rRNA genes. In addition, the mcrA functional gene was used s a target for the detection of the most abundant methanogens. Basic bacterial morphology classification was done by VIT(®) gene probe technology using a fluorescence microscope. Dried DAN and DAO biomasses required approximately four operational runs to recover their initial methanogenic activity compared to WET biomass. LIVE/DEAD results showed clear increases in the proportions of the viable biomass of the total bacterial communities over time, especially for the DAN and DAO samples. A comparison of the qPCR results of both DAN and DAO to the WET biomass showed that the methanogenic mcrA gene fraction of the total biomass population of 16S rRNA gene concentrations decreased moderately by about 17.2% in the samples of DAO and by approximately 6.7% in the samples of DAN over all runs after Run1.


Assuntos
Archaea , Fenômenos Fisiológicos Bacterianos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Archaea/fisiologia , Biomassa , Reatores Biológicos/microbiologia , Metano/metabolismo , Microbiota , Esgotos/microbiologia
12.
Sci Total Environ ; 485-486: 828-841, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24767316

RESUMO

The overall aim of the this study, which was conducted within the framework of the multilateral IWRM project SUMAR, was to expand the scientific basement to quantify surface- and groundwater fluxes towards the hypersaline Dead Sea. The flux significance for the arid vicinity around the Dead Sea is decisive not only for a sustainable management in terms of water availability for future generations but also for the resilience of the unique ecosystems along its coast. Coping with different challenges interdisciplinary methods like (i) hydrogeochemical fingerprinting, (ii) satellite and airborne-based thermal remote sensing, (iii) direct measurement with gauging station in ephemeral wadis and a first multilateral gauging station at the river Jordan, (iv) hydro-bio-geochemical approach at submarine and shore springs along the Dead Sea and (v) hydro(geo)logical modelling contributed to the overall aim. As primary results, we deduce that the following: (i) Within the drainage basins of the Dead Sea, the total mean annual precipitation amounts to 300 mm a(−1) west and to 179 mm a(−1) east of the lake, respectively. (ii) The total mean annual runoff volumes from side wadis (except the Jordan River) entering the Dead Sea is approximately 58­66 × 10(6) m(3) a(−1) (western wadis: 7­15 × 10(6) m(3) a(−1); eastern wadis: 51 × 10(6) m(3) a(−1)). (iii) The modelled groundwater discharge from the upper Cretaceous aquifers in both flanks of the Dead Sea towards the lake amounts to 177 × 10(6) m(3) a(−1). (iv) An unexpected abundance of life in submarine springs exists, which in turn explains microbial moderated geo-bio-chemical processes in the Dead Sea sediments, affecting the highly variable chemical composition of on- and offshore spring waters.The results of this work show a promising enhancement of describing and modelling the Dead Sea basin as a whole.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/química , Água Subterrânea/química , Movimentos da Água , Clima Desértico , Água Doce/análise , Água Subterrânea/análise , Jordânia
13.
Water Res ; 46(8): 2505-14, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22265254

RESUMO

Microorganisms are retained by ultrafiltration (UF) membranes mainly due to size exclusion. The sizes of viruses and membrane pores are close to each other and retention of viruses can be guaranteed only if the precise pore diameter is known. Unfortunately and rather surprisingly, there is no direct method to determine the membrane pore size. As a result, the UF membranes are not trusted to remove the viruses, and the treatment plants are required to enhance viral disinfection. Here we propose a new, simple and effective method for UF pore size determination using aquasols of gold and silver nanoparticles. We synthesized highly monodispersed suspensions ranging in diameter from 3 to 50 nm, which were later transferred through polymer and ceramic UF membranes. The retention percentage was plotted against the particle diameter to determine the pore size for which a membrane has a retention capability of 50, 90 and 100%. The d(50), d(90) and d(100) values were compared with data obtained from conventional transmembrane flux, polyethylene glycol, and dextran tests, and with the retention of phi X 174 and MS2 bacteriophages. The absolute pore size, d(100), for the majority of tested UF membranes is within 40-50 nm, and can only be detected with the new tests. The average 1.2 log retention of hydrophilic phi X 174 was predicted accurately by models based on the virus hydrodynamic radii and d(100) pore size. The 2.5 log MS2 retention suggests hydrophobic interactions in addition to simple ball-through-cylinder geometry.


Assuntos
Membranas Artificiais , Nanoporos , Tamanho da Partícula , Ultrafiltração/métodos , Vírus/isolamento & purificação , Absorção , Bacteriófagos/isolamento & purificação , Calibragem , Ouro/química , Hidrodinâmica , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Peso Molecular , Nanoporos/ultraestrutura , Polietilenoglicóis/química , Polivinil/química , Porosidade , Espectrofotometria Atômica , Eletricidade Estática , Propriedades de Superfície , Água/química
14.
Water Res ; 45(16): 4827-36, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21764099

RESUMO

The fates of several macrolide, sulphonamide, and trimethoprim antibiotics contained in the raw sewage of the Tel-Aviv wastewater treatment plant (WWTP) were investigated after the sewage was treated using either a full-scale conventional activated sludge (CAS) system coupled with a subsequent ultrafiltration (UF) step or a pilot membrane bioreactor (MBR) system. Antibiotics removal in the MBR system, once it achieved stable operation, was 15-42% higher than that of the CAS system. This advantage was reduced to a maximum of 20% when a UF was added to the CAS. It was hypothesized that the contribution of membrane separation (in both systems) to antibiotics removal was due either to sorption to biomass (rather than improvement in biodegradation) or to enmeshment in the membrane biofilm (since UF membrane pores are significantly larger than the contaminant molecules). Batch experiments with MBR biomass showed a markedly high potential for sorption of the tested antibiotics onto the biomass. Moreover, methanol extraction of MBR biomass released significant amounts of sorbed antibiotics. This finding implies that more attention must be devoted to the management of excess sludge.


Assuntos
Antibacterianos/química , Reatores Biológicos , Membranas Artificiais , Esgotos/química , Biofilmes , Ultrafiltração
15.
ISME J ; 4(3): 327-36, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19924159

RESUMO

Changes in the microbial community composition of a full-scale membrane bioreactor treating industrial wastewater were studied over a period of 462 days using a series of 16S rRNA gene clone libraries. Frequent changes in the relative abundance of specific taxonomic groups were observed, which could not be explained by changes in the reactor's conditions or wastewater composition. Phage activity was proposed to drive some of the observed changes. Bacterial hosts were isolated from a biomass sample obtained towards the end of the study period, and specific phage counts were carried out for some of the isolated hosts using stored frozen biomass samples as the phage inocula. Plaque-forming unit concentrations were shown to change frequently over the study period, in correlation with changes in the relative abundance of taxonomic groups closely related by 16S rRNA gene sequence to the isolated strains. Quantitative PCR was used to verify changes in the abundance of a taxonomic group closely related to one of the isolated hosts, showing good agreement with the changes in relative abundance in the clone libraries of that group. The emerging pattern was consistent with the 'killing the winner' hypothesis, although alternative interaction mechanisms could not be ruled out. This is the first time that phage-host interactions in a complex microbial community are demonstrated over an extended period, and possibly the first in situ demonstration of 'killing the winner' stochastic behavior.


Assuntos
Bactérias/classificação , Bactérias/virologia , Bacteriófagos/crescimento & desenvolvimento , Biodiversidade , Reatores Biológicos/microbiologia , Purificação da Água , Bactérias/genética , Bactérias/isolamento & purificação , Análise por Conglomerados , Contagem de Colônia Microbiana , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Interações Hospedeiro-Parasita , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Carga Viral , Ensaio de Placa Viral
16.
Environ Sci Technol ; 44(14): 5503-8, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20575566

RESUMO

An economic analysis and feasibility study of a sequential biosolids management process was developed and tested using Genetic Algorithm (GA). The algorithm was used to identify trends and behaviors of the "Biosolids Process Train". This heuristic method of analysis is robust in that it will not only simulate different design scenarios, its analysis will also suggest possible solutions which meet predetermined requirements. This concept was adopted because GA's biggest advantage is the capability to analyze multiple objective functions, design variables, and constraints. The range of "good approximations" provided by the GA solutions could be useful for municipal wastewater planners who need to search for potential alternatives and evaluate new technologies for managing biosolids. The unit processes in the model were arranged sequentially so the effect modifications to thickening and dewatering parameters could easily be observed further along in the process. The model was extended to examine the supernatant return flow quality and the potential impact on the wastewater treatment plant. Results from a sensitivity analysis on operating expenses reveals the impact that fluctuations in fuel, electricity, and labor costs can have on the total biosolids management cost as well as the selection of the appropriate treatment sequence.


Assuntos
Algoritmos , Modelos Teóricos , Esgotos , Eliminação de Resíduos Líquidos/métodos
17.
Waste Manag ; 30(10): 1881-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20347586

RESUMO

Production of biodiesel is currently limited due to lack of economically beneficial feedstocks. Suitability of municipal wastewater sludge and olive mill waste as feedstocks for biodiesel production was evaluated. The various bio-waste sources were analyzed for their oil content and fatty acid composition using conventional analyses complemented with time domain (TD)-NMR analysis. TD-NMR, a rapid non-destructive method newly applied in this field, yielded good correlations with conventional methods. Overall biodiesel yields obtained by TD-NMR analysis were 7.05% and 9.18% (dry wt) for olive mill pomace and liquid wastes, and 11.92%, 7.07%, and 4.65% (dry wt) for primary, secondary, and anaerobically stabilized sludge, respectively. Fatty acid analysis indicated fundamental suitability of these agro-industrial waste resources for biodiesel production. Evaluation of bio-waste materials by TD-NMR revealed the potential of this tool to identify waste-oil sources cost effectively and quickly, supporting expansion of a sustainable biodiesel industry in Israel and other regions.


Assuntos
Biocombustíveis , Reatores Biológicos , Espectroscopia de Ressonância Magnética/métodos , Óleos de Plantas , Eliminação de Resíduos/métodos , Esgotos , Ácidos Graxos/análise , Israel , Azeite de Oliva
18.
Int J Environ Res Public Health ; 6(2): 478-91, 2009 02.
Artigo em Inglês | MEDLINE | ID: mdl-19440395

RESUMO

Flame-retardants (FR) are a group of anthropogenic environmental contaminants used at relatively high concentrations in many applications. Currently, the largest market group of FRs is the brominated flame retardants (BFRs). Many of the BFRs are considered toxic, persistent and bioaccumulative. Bioremediation of contaminated water, soil and sediments is a possible solution for the problem. However, the main problem with this approach is the lack of knowledge concerning appropriate microorganisms, biochemical pathways and operational conditions facilitating degradation of these chemicals at an acceptable rate. This paper reviews and discusses current knowledge and recent developments related to the environmental fate and impact of FRs in natural systems and in engineered treatment processes.


Assuntos
Poluentes Ambientais/farmacocinética , Retardadores de Chama/farmacocinética , Recuperação e Remediação Ambiental
19.
Saline Syst ; 5: 2, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19226456

RESUMO

Abundance and seasonal dynamics of sulfate-reducing bacteria (SRB), in general, and of extreme halophilic SRB (belonging to Desulfocella halophila) in particular, were examined in highly saline industrial wastewater evaporation ponds over a forty one month period. Industrial wastewater was sampled and the presence of SRB was determined by quantitative real-time PCR (qPCR) with a set of primers designed to amplify the dissimilatory sulfite reductase (dsrA) gene. SRB displayed higher abundance during the summer (10(6)-10(8) targets ml(-1)) and lower abundance from the autumn-spring (10(3)-10(5) targets ml(-1)). However, addition of concentrated dissolved organic matter into the evaporation ponds during winter immediately resulted in a proliferation of SRB, despite the lower wastewater temperature (12-14 degrees C). These results indicate that the qPCR approach can be used for rapid measurement of SRB to provide valuable information about the abundance of SRB in harsh environments, such as highly saline industrial wastewaters. Low level of H2S has been maintained over five years, which indicates a possible inhibition of SRB activity, following artificial salination (approximately 16% w/v of NaCl) of wastewater evaporation ponds, despite SRB reproduction being detected by qPCR.

20.
Microb Ecol ; 54(3): 439-51, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17351812

RESUMO

Real-time polymerase chain reaction (PCR) is considered a highly sensitive method for the quantification of microbial organisms in environmental samples. This study was conducted to evaluate real-time PCR with SybrGreen detection as a quantification method for sulfate-reducing bacteria (SRB) in industrial wastewater produced by several chemical industries. We designed four sets of primers and developed standard curves based on genomic DNA of Desulfovibrio vulgaris from pure culture and on plasmids containing dissimilatory sulfate reductase (dsrA) or adenosine-5'-phosphosulfate reductase (apsA) genes of SRB. All the standard curves, two for dsrA and two for apsA genes, had a linear range between 0.95 x 10(2) and 9.5 x 10(6) copies/microL and between 1.2 x 10(3) and 1.2 x 10(7) copies/microL, respectively. The theoretical copy numbers of the tenfold dilutions of D. vulgaris genomic DNA were best estimated (between 2.7 to 10.5 times higher than theoretical numbers) by the standard curve with DSR1F and RH3-dsr-R primers. To mimic the effect of foreign DNA in environmental samples, serial dilutions of D. vulgaris genomic DNA were mixed with Escherichia coli chromosomal DNA (40 ng per assay). This influenced neither PCR amplification nor the quantification of target DNA. Industrial wastewater was sampled during a 15-month period and analyzed for the presence of SRB, based on dsrA gene amplification. SRB displayed a higher abundance during the summer (about 10(7)-10(8) targets mL(-1)) and lower during the winter (about 10(4)-10(5) targets mL(-1)). The results indicate that our real-time PCR approach can be used for detection of uncultured SRB and will provide valuable information related to the abundance of SRB in durable environmental samples, such as complex and saline industrial wastewaters.


Assuntos
Sulfito de Hidrogênio Redutase/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Reação em Cadeia da Polimerase/métodos , Esgotos/microbiologia , Bactérias Redutoras de Enxofre/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sulfito de Hidrogênio Redutase/metabolismo , Dados de Sequência Molecular , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Filogenia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA