Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Eur J Immunol ; 49(8): 1235-1250, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31127857

RESUMO

CD4+ T-cell subsets play a major role in the host response to infection, and a healthy immune system requires a fine balance between reactivity and tolerance. This balance is in part maintained by regulatory T cells (Treg), which promote tolerance, and loss of immune tolerance contributes to autoimmunity. As the T cells which drive immunity are diverse, identifying and understanding how these subsets function requires specific biomarkers. From a human CD4 Tconv/Treg cell genome wide analysis we identified peptidase inhibitor 16 (PI16) as a CD4 subset biomarker and we now show detailed analysis of its distribution, phenotype and links to Treg function in type 1 diabetes. To determine the clinical relevance of Pi16 Treg, we analysed PI16+ Treg cells from type 1 diabetes patient samples. We observed that FOXP3 expression levels declined with disease progression, suggesting loss of functional fitness in these Treg cells in Type 1 diabetes, and in particular the rate of loss of FOXP3 expression was greatest in the PI16+ve Treg. We propose that PI16 has utility as a biomarker of functional human Treg subsets and may be useful for tracking loss of immune function in vivo. The ability to stratify at risk patients so that tailored interventions can be applied would open the door to personalised medicine for Type 1 diabetes.


Assuntos
Biomarcadores/metabolismo , Proteínas de Transporte/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Glicoproteínas/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Adolescente , Antígenos CD4/metabolismo , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/diagnóstico , Progressão da Doença , Regulação para Baixo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Tolerância Imunológica , Masculino , Medicina de Precisão , Risco , Transcriptoma , Adulto Jovem
2.
J Immunol ; 185(2): 1071-81, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20554955

RESUMO

The transcription factor FOXP3 is essential for the formation and function of regulatory T cells (Tregs), and Tregs are essential for maintaining immune homeostasis and tolerance. This is demonstrated by a lethal autoimmune defect in mice lacking Foxp3 and in immunodysregulation polyendocrinopathy enteropathy X-linked syndrome patients. However, little is known about the molecular basis of human FOXP3 function or the relationship between direct and indirect targets of FOXP3 in human Tregs. To investigate this, we have performed a comprehensive genome-wide analysis for human FOXP3 target genes from cord blood Tregs using chromatin immunoprecipitation array profiling and expression profiling. We have identified 5579 human FOXP3 target genes and derived a core Treg gene signature conserved across species using mouse chromatin immunoprecipitation data sets. A total of 739 of the 5579 FOXP3 target genes were differentially regulated in Tregs compared with Th cells, thus allowing the identification of a number of pathways and biological functions overrepresented in Tregs. We have identified gene families including cell surface molecules and microRNAs that are differentially expressed in FOXP3(+) Tregs. In particular, we have identified a novel role for peptidase inhibitor 16, which is expressed on the cell surface of >80% of resting human CD25(+)FOXP3(+) Tregs, suggesting that in conjunction with CD25 peptidase inhibitor 16 may be a surrogate surface marker for Tregs with potential clinical application.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Genoma Humano/genética , Linfócitos T Reguladores/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Proliferação de Células , Separação Celular/métodos , Células Cultivadas , Imunoprecipitação da Cromatina/métodos , Sangue Fetal/citologia , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , Linfócitos T Reguladores/citologia
3.
J Immunol Methods ; 327(1-2): 53-62, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17804010

RESUMO

Regulatory T cells (Treg) have recently come to the fore in studies of immune regulation, particularly in autoimmune disease and cancer. While there appear to be several distinct subsets of T cells with regulatory function, a population described as natural Treg and characterized by expression of the transcription factor FOXP3 has attracted particular interest. These cells can be enriched using the surface markers CD4 and CD25, and cord blood is a convenient source of CD25+ Treg. We present detailed protocols for the enrichment of Treg from cord blood using CD25 and a magnetic bead procedure, yielding populations >80% positive for CD25 and 50-65% FOXP3 positive. This enrichment can be followed by a second magnetic bead or a flow sorting step, yielding >95% CD25 and >65% FOXP3 positive populations. Protocols are presented for propagation of these cells in culture (yielding >80% FOXP3 positive cells) and for their phenotypic and functional characterization.


Assuntos
Sangue Fetal/citologia , Citometria de Fluxo , Separação Imunomagnética , Linfócitos T Reguladores , Antígenos CD4 , Técnicas de Cultura de Células/métodos , Feminino , Sangue Fetal/imunologia , Citometria de Fluxo/métodos , Humanos , Separação Imunomagnética/métodos , Subunidade alfa de Receptor de Interleucina-2 , Gravidez , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia
4.
J Leukoc Biol ; 85(3): 445-51, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19103952

RESUMO

Adult stem cells are capable of generating all of the cells of the hematopoietic system, and this process is orchestrated in part by the interactions between these cells and the stroma. T cell progenitors emerge from the stem cell compartment and migrate to the thymus, where their terminal differentiation and maturation occur, and it is during this phase that selection shapes the immune repertoire. Notch ligands, including Delta-like 1 (DL1), play a critical role in this lymphoid differentiation. To mimic this in vitro, stroma-expressing DL1 have been used to generate CD4(+)CD8(+) double-positive and single-positive T cells from hematopoietic stem/progenitor cells. This system provides a robust tool to investigate thymopoiesis; however, its capacity to generate regulatory T cells (Tregs) has yet to be reported. Natural Tregs (nTregs) develop in the thymus and help maintain immune homeostasis and have potential clinical use as a cell therapy for modulation of autoimmune disease or for transplant tolerization. Here, we describe for the first time the development of a population of CD4(+)CD25(+) CD127(lo)FoxP3(+) cells that emerge in coculture of cord blood (CB) CD34(+) progenitors on OP9-DL1 stroma. These hematopoietic progenitor-derived CD4(+)CD25(+) Tregs have comparable suppressor function with CB nTregs in vitro. The addition of IL-2 to the coculture enhanced the expansion and survival of this population significantly. This manipulable culture system, therefore, generates functional Tregs and provides a system to elucidate the mechanism of Treg development.


Assuntos
Células-Tronco Hematopoéticas/citologia , Linfócitos T Reguladores/citologia , Antígenos CD4 , Técnicas de Cultura de Células , Proliferação de Células , Sangue Fetal/citologia , Fatores de Transcrição Forkhead , Humanos , Interleucina-2/farmacologia , Subunidade alfa de Receptor de Interleucina-2 , Células Estromais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA