Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Rev Mol Cell Biol ; 21(10): 585-606, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32457507

RESUMO

The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications.


Assuntos
Vesículas Extracelulares/metabolismo , Mamíferos/metabolismo , RNA/metabolismo , Animais , Transporte Biológico/fisiologia , Comunicação Celular/fisiologia , Humanos
2.
Mol Ther ; 31(7): 2206-2219, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198883

RESUMO

X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease caused by a retrotransposon insertion in intron 32 of the TAF1 gene. This insertion causes mis-splicing of intron 32 (TAF1-32i) and reduced TAF1 levels. TAF1-32i transcript is unique to XDP patient cells and can be detected in their extracellular vesicles (EVs). We engrafted patient and control iPSC-derived neural progenitor cells (hNPCs) into the striatum of mice. To track TAF1-32i transcript spread by EVs, we transduced the brain-implanted hNPCs with a lentiviral construct called ENoMi, which consists of a re-engineered tetraspanin scaffold tagged with bioluminescent and fluorescent reporter proteins under an EF-1α promoter. Alongside this improved detection in ENoMi-hNPCs-derived EVs, their surface allows specific immunocapture purification, thereby facilitating TAF1-32i analysis. Using this ENoMi-labeling method, TAF1-32i was demonstrated in EVs released from XDP hNPCs implanted in mouse brains. Post-implantation of ENoMi-XDP hNPCs, TAF1-32i transcript was retrieved in EVs isolated from mouse brain and blood, and levels increased over time in plasma. We compared and combined our EV isolation technique to analyze XDP-derived TAF1-32i with other techniques, including size exclusion chromatography and Exodisc. Overall, our study demonstrates the successful engraftment of XDP patient-derived hNPCs in mice as a tool for monitoring disease markers with EVs.


Assuntos
Vesículas Extracelulares , Doenças Neurodegenerativas , Humanos , Camundongos , Animais , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Biomarcadores , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo
3.
Mol Ther ; 31(7): 2220-2239, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37194237

RESUMO

In the central nervous system (CNS), the crosstalk between neural cells is mediated by extracellular mechanisms, including brain-derived extracellular vesicles (bdEVs). To study endogenous communication across the brain and periphery, we explored Cre-mediated DNA recombination to permanently record the functional uptake of bdEVs cargo over time. To elucidate functional cargo transfer within the brain at physiological levels, we promoted the continuous secretion of physiological levels of neural bdEVs containing Cre mRNA from a localized region in the brain by in situ lentiviral transduction of the striatum of Flox-tdTomato Ai9 mice reporter of Cre activity. Our approach efficiently detected in vivo transfer of functional events mediated by physiological levels of endogenous bdEVs throughout the brain. Remarkably, a spatial gradient of persistent tdTomato expression was observed along the whole brain, exhibiting an increment of more than 10-fold over 4 months. Moreover, bdEVs containing Cre mRNA were detected in the bloodstream and extracted from brain tissue to further confirm their functional delivery of Cre mRNA in a novel and highly sensitive Nanoluc reporter system. Overall, we report a sensitive method to track bdEV transfer at physiological levels, which will shed light on the role of bdEVs in neural communication within the brain and beyond.


Assuntos
Vesículas Extracelulares , Integrases , Camundongos , Animais , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Integrases/genética , Integrases/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo
4.
Vet Res ; 54(1): 28, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973819

RESUMO

Streptococcus uberis is a major causative agent of bovine mastitis, an inflammation of the mammary gland with substantial economic consequences. To reduce antibiotic use in animal agriculture, alternative strategies to treat or prevent mastitis are being investigated. Bovine-associated non-aureus staphylococci are proposed in that respect due to their capacity to inhibit the in vitro growth of S. uberis. We demonstrate that priming the murine mammary gland with Staphylococcus chromogenes IM reduces S. uberis growth in comparison with non-primed glands. The innate immune system is activated by increasing IL-8 and LCN2, which may explain this decreased growth.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Infecções Estreptocócicas , Feminino , Animais , Bovinos , Camundongos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Glândulas Mamárias Animais/microbiologia , Streptococcus , Mastite Bovina/prevenção & controle , Mastite Bovina/microbiologia
5.
J Mammary Gland Biol Neoplasia ; 21(3-4): 113-122, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27714576

RESUMO

Breast tumorigenesis is classically studied in mice by inoculating tumor cells in the fat pad, the adipose compartment of the mammary gland. Alternatively, the mammary ducts, which constitute the luminal mammary gland compartment, also provide a suitable inoculation site to induce breast cancer in murine models. The microenvironments in these compartments influence tumor cell progression, yet this effect has not been investigated in an immunocompetent context. Here, we compared both mammary gland compartments as distinct inoculation sites, taking into account the immunological aspect by inoculating 4T1 tumor cells in immunocompetent mice. Following tumor cell inoculation in the adipose compartment of non-pretreated/naive, hormonally pretreated/naive and non-pretreated/lactating mice, the primary tumors developed similarly. However, a slower onset of primary tumor growth was found after inoculations in the luminal compartment of non-pretreated/lactating mice. Despite this difference in tumor development rate, metastasis to the liver and lungs was equally observed and was accompanied by lymphatic spreading of tumor cells and progressive splenomegaly with both inoculation types. Chitinase 3-like 1 (CHI3L1) and lipocalin 2 (LCN2) served as innovative biomarkers for disease progression showing increased levels in primary tumors and sera of the non-pretreated/lactating inoculation groups. A slower increase in circulating CHI3L1 but not LCN2 levels, was observed after inoculations in the luminal compartment which corroborated the slower tumor development at this inoculation site. Our results highlight the critical impact of different mammary gland compartments on tumor development in syngeneic murine models and support the use of novel tumor progression biomarkers in an immune-competent environment.


Assuntos
Tecido Adiposo/patologia , Carcinogênese/patologia , Neoplasias Mamárias Experimentais/patologia , Neoplasias de Mama Triplo Negativas/patologia , Tecido Adiposo/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Lactação/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Obesidade/metabolismo , Obesidade/patologia , Neoplasias de Mama Triplo Negativas/metabolismo
6.
Angew Chem Int Ed Engl ; 55(22): 6551-5, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27095479

RESUMO

The modulation of bacterial communication to potentiate the effect of existing antimicrobial drugs is a promising alternative to the development of novel antibiotics. In the present study, we synthesized 58 analogues of hamamelitannin (HAM), a quorum sensing inhibitor and antimicrobial potentiator. These efforts resulted in the identification of an analogue that increases the susceptibility of Staphylococcus aureus towards antibiotics in vitro, in Caenorhabditis elegans, and in a mouse mammary gland infection model, without showing cytotoxicity.


Assuntos
Antibacterianos/farmacologia , Ácido Gálico/análogos & derivados , Hexoses/farmacologia , Percepção de Quorum/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Relação Dose-Resposta a Droga , Ácido Gálico/química , Ácido Gálico/farmacologia , Hexoses/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
7.
iScience ; 27(2): 108807, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303726

RESUMO

Glioblastoma (GBM) is the most aggressive brain tumor, presenting major challenges due to limited treatment options. Standard care includes radiation therapy (RT) to curb tumor growth and alleviate symptoms, but its impact on GBM is limited. In this study, we investigated the effect of RT on immune suppression and whether extracellular vesicles (EVs) originating from GBM and taken up by the tumor microenvironment (TME) contribute to the induced therapeutic resistance. We observed that (1) ionizing radiation increases immune-suppressive markers on GBM cells, (2) macrophages exacerbate immune suppression in the TME by increasing PD-L1 in response to EVs derived from GBM cells which is further modulated by RT, and (3) RT increases CD206-positive macrophages which have the most potential in inducing a pro-oncogenic environment due to their increased uptake of tumor-derived EVs. In conclusion, RT affects GBM resistance by immuno-modulating EVs taken up by myeloid cells in the TME.

8.
Adv Drug Deliv Rev ; 211: 115346, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849005

RESUMO

Gene editing technologies have the potential to correct genetic disorders by modifying, inserting, or deleting specific DNA sequences or genes, paving the way for a new class of genetic therapies. While gene editing tools continue to be improved to increase their precision and efficiency, the limited efficacy of in vivo delivery remains a major hurdle for clinical use. An ideal delivery vehicle should be able to target a sufficient number of diseased cells in a transient time window to maximize on-target editing and mitigate off-target events and immunogenicity. Here, we review major advances in novel delivery platforms based on cell-derived vesicles - extracellular vesicles and virus-like particles - for transient delivery of gene editing payloads. We discuss major findings regarding packaging, in vivo biodistribution, therapeutic efficacy, and safety concerns of cell-derived vesicles delivery of gene editing cargos and their potential for clinical translation.


Assuntos
Vesículas Extracelulares , Edição de Genes , Técnicas de Transferência de Genes , Humanos , Edição de Genes/métodos , Animais , Vesículas Extracelulares/metabolismo , Terapia Genética/métodos
9.
Mol Neurobiol ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39138760

RESUMO

Glioblastoma (GBM) is a highly aggressive brain cancer with a low survival rate, prompting the exploration of novel therapeutic strategies. Immune checkpoint inhibitors have shown promise in cancer treatment but are associated with immune-related toxicities and brain penetration. Here, we present a targeted approach using an adeno-associated virus serotype 9 (AAV9) to systemically deliver a single-chain fragment variable antibody against PD-1 (scFv-PD-1) into the tumor microenvironment (TME). Single-cell RNA sequencing analysis revealed robust PD-1 expression in GBM TME, predominantly on T cells. AAV9-scFv-PD-1 expressed and secreted scFv-PD-1, which effectively binds to PD-1. Systemic administration of AAV9-scFv-PD-1 in an immunocompetent GBM mouse model resulted in a robust cytolytic T-cell activation at the tumor site, marked by accumulation of IFN-γ and Granzyme B, leading to a significant reduction in tumor growth. Importantly, AAV9-scFv-PD-1 treatment conferred a survival benefit, highlighting its therapeutic potential. This study demonstrates the feasibility of systemically delivered AAV9-mediated local expression of scFv-PD-1 for targeted immunotherapy in GBM and warrants further investigation for clinical translation.

10.
J Fluoresc ; 23(5): 909-20, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23579930

RESUMO

In vivo optical imaging has become a popular tool in animal laboratories. Currently, many in vivo optical imaging systems are available on the market, which often makes it difficult for research groups to decide which system fits their needs best. In this work we compared different commercially available systems, which can measure both bioluminescent and fluorescent light. The systems were tested for their bioluminescent and fluorescent sensitivity both in vitro and in vivo. The IVIS Lumina II was found to be most sensitive for bioluminescence imaging, with the Photon Imager a close second. Contrary, the Kodak system was, in vitro, the most sensitive system for fluorescence imaging. In vivo, the fluorescence sensitivity of the systems was similar. Finally, we examined the added value of spectral unmixing algorithms for in vivo optical imaging and demonstrated that spectral unmixing resulted in at least a doubling of the in vivo sensitivity. Additionally, spectral unmixing also enabled separate imaging of dyes with overlapping spectra which were, without spectral unmixing, not distinguishable.


Assuntos
Luminescência , Algoritmos , Animais , Temperatura Corporal , Corantes/química , Escherichia coli/química , Feminino , Lipossomos/química , Camundongos , Camundongos Endogâmicos , Camundongos Nus , Imagem Óptica/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA