Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Pharmacol Exp Ther ; 374(1): 24-37, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32332113

RESUMO

Chronic kidney disease (CKD) remains a common disorder, leading to growing health and economic burden without curative treatment. In diabetic patients, CKD may result from a combination of metabolic and nonmetabolic-related factors, with mortality mainly driven by cardiovascular events. The marked overactivity of the urotensinergic system in diabetic patients implicates this vasoactive peptide as a possible contributor to the pathogenesis of renal as well as heart failure. Previous preclinical studies with urotensin II (UII) antagonists in chronic kidney disease were based on simple end points that did not reflect the complex etiology of the disease. Given this, our studies revisited the therapeutic value of UII antagonism in CKD and extensively characterized 1-({[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(2-methylphenyl)pyridin-2-yl]carbonyl}amino) cyclohexanecarboxylic acid hydrochloride (SAR101099), a potent, selective, and orally long-acting UII receptor competitive antagonist, inhibiting not only UII but also urotensin-related peptide activities. SR101099 treatment more than halved proteinurea and albumin/creatinine ratio in spontaneously hypertensive stroke-prone (SHR-SP) rats fed with salt/fat diet and Dahl-salt-sensitive rats, respectively, and it halved albuminuria in streptozotocin-induced diabetes rats. Importantly, these effects were accompanied by a decrease in mortality of 50% in SHR-SP and of 35% in the Dahl salt-sensitive rats. SAR101099 was also active on CKD-related cardiovascular pathologies and partly preserved contractile reserve in models of heart failure induced by myocardial infarction or ischemia/reperfusion in rats and pigs, respectively. SAR101099 exhibited a good safety/tolerability profile at all tested doses in clinical phase-I studies. Together, these data suggest that CKD patient selection considering comorbidities together with new stratification modalities should unveil the urotensin antagonists' therapeutic potential. SIGNIFICANCE STATEMENT: Chronic kidney disease (CKD) is a pathology with growing health and economic burden, without curative treatment. For years, the impact of urotensin II receptor (UT) antagonism to treat CKD may have been compromised by available tools or models to deeper characterize the urotensinergic system. New potent, selective, orally long-acting cross-species UT antagonist such as SAR101099 exerting reno- and cardioprotective effects could offer novel therapeutic opportunities. Its preclinical and clinical results suggest that UT antagonism remains an attractive target in CKD on top of current standard of care.


Assuntos
Receptores Acoplados a Proteínas G/antagonistas & inibidores , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/epidemiologia , Animais , Comorbidade , Células HEK293 , Hemodinâmica/efeitos dos fármacos , Humanos , Ratos , Insuficiência Renal Crônica/fisiopatologia
2.
Br J Pharmacol ; 181(13): 1993-2011, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38450758

RESUMO

BACKGROUND: The therapeutic potential of relaxin for heart failure and renal disease in clinical trials is hampered by the short half-life of serelaxin. Optimization of fatty acid-acetylated single-chain peptide analogues of relaxin culminated in the design and synthesis of R2R01, a potent and selective RXFP1 agonist with subcutaneous bioavailability and extended half-life. EXPERIMENTAL APPROACH: Cellular assays and pharmacological models of RXFP1 activation were used to validate the potency and selectivity of R2R01. Increased renal blood flow was used as a translational marker of R2R01 activity. Human mastocytes (LAD2 cells) were used to study potential pseudo-allergic reactions and CD4+ T-cells to study immunogenicity. The pharmacokinetics of R2R01 were characterized in rats and minipigs. KEY RESULTS: In vitro, R2R01 had comparable potency and efficacy to relaxin as an agonist for human RXFP1. In vivo, subcutaneous administration of R2R01 increased heart rate and renal blood flow in normotensive and hypertensive rat and did not show evidence of tachyphylaxis. R2R01 also increased nipple length in rats, used as a chronic model of RXFP1 engagement. Pharmacokinetic studies showed that R2R01 has a significantly extended terminal half-life. The in vitro assays with LAD2 cells and CD4+ T-cells showed that R2R01 had low potential for pseudo-allergic and immunogenic reactions, respectively. CONCLUSION AND IMPLICATIONS: R2R01 is a potent RXFP1 agonist with an extended half-life that increases renal blood flow in various settings including normotensive and hypertensive conditions. The preclinical efficacy and safety data supported clinical development of R2R01 as a potential new therapy for renal and cardiovascular diseases.


Assuntos
Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Ratos , Suínos , Masculino , Receptores de Peptídeos/agonistas , Receptores de Peptídeos/metabolismo , Porco Miniatura , Doenças Cardiovasculares/tratamento farmacológico , Nefropatias/tratamento farmacológico , Ratos Sprague-Dawley , Peptídeos/farmacologia , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Relaxina/farmacologia , Relaxina/administração & dosagem , Relaxina/farmacocinética , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Mastócitos/metabolismo
3.
Stem Cell Res ; 52: 102245, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610018

RESUMO

MYH7 is a major gene responsible for hypertrophic cardiomyopathy (HCM). From patient's skin fibroblasts, we derived an iPSC line (CDGEN1.16) harboring the heterozygous MYH7 R403L mutation, a hot-spot codon in HCM. We subsequently corrected the mutated codon using CRISPR/Cas9 editing and obtained the isogenic control line (CDGEN1.16.40.5) preserving the genomic background of the patient. Both lines were pluripotent and could be efficiently committed to beating cardiomyocytes (CM) suitable for subsequent cell or pseudo-tissue study of HCM pathology.


Assuntos
Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/genética , Humanos , Mutação , Miócitos Cardíacos , Cadeias Pesadas de Miosina/genética
4.
Peptides ; 142: 170568, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33965442

RESUMO

There is growing evidence that apelin plays a role in the regulation of the cardiovascular system by increasing myocardial contractility and acting as a vasodilator. However, it remains unclear whether apelin improves cardiac contractility in a load-dependent or independent manner in pathological conditions. For this purpose we investigated the cardiovascular effects of apelin in α-actin transgenic mice (mActin-Tg mice), a model of cardiomyopathy. [Pyr1]apelin-13 was administered by continuous infusion at 2 mg/kg/d for 3 weeks. Effects on cardiac function were determined by echocardiography and a Pressure-Volume (PV) analysis. mActin-Tg mice showed a dilated cardiomyopathy (DCM) phenotype similar to that encountered in patients expressing the same mutation. Compared to WT animals, mActin-Tg mice displayed cardiac systolic impairment [significant decrease in ejection fraction (EF), cardiac output (CO), and stroke volume (SV)] associated with cardiac ventricular dilation and diastolic dysfunction, characterized by an impairment in mitral flow velocity (E/A) and in deceleration time (DT). Load-independent myocardial contractility was strongly decreased in mActin-Tg mice while total peripheral vascular resistance (TPR) was significantly increased. As compared to vehicle-treated animals, a 3-week treatment with [Pyr1]apelin-13 significantly improved EF%, SV, E/A, DT and corrected TPR, with no significant effect on load-independent indices of myocardial contractility, blood pressure and heart rate. In conclusion [Pyr1]apelin-13 displayed no intrinsic contractile effect but improved cardiac function in dilated cardiomyopathy mainly by reducing peripheral vascular resistance, with no change in blood pressure.


Assuntos
Apelina/farmacologia , Cardiomiopatia Dilatada/tratamento farmacológico , Doenças Vasculares Periféricas/prevenção & controle , Resistência Vascular , Vasodilatação , Animais , Pressão Sanguínea , Cardiomiopatia Dilatada/patologia , Modelos Animais de Doenças , Frequência Cardíaca , Humanos , Camundongos , Camundongos Transgênicos , Doenças Vasculares Periféricas/patologia , Volume Sistólico
5.
Biochem Biophys Rep ; 22: 100767, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32490213

RESUMO

Cardiomyopathy caused by A-type lamins gene (LMNA) mutations (LMNA cardiomyopathy) is associated with dysfunction of the heart, often leading to heart failure. LMNA cardiomyopathy is highly penetrant with bad prognosis with no specific therapy available. Searching for alternative ways to halt the progression of LMNA cardiomyopathy, we studied the role of calcium homeostasis in the evolution of this disease. We showed that sarcolipin, an inhibitor of the sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) was abnormally elevated in the ventricular cardiomyocytes of mutated mice compared with wild type mice, leading to an alteration of calcium handling. This occurs early in the progression of the disease, when the left ventricular function was not altered. We further demonstrated that down regulation of sarcolipin using adeno-associated virus (AAV) 9-mediated RNA interference delays cardiac dysfunction in mouse model of LMNA cardiomyopathy. These results showed a novel role for sarcolipin on calcium homeostasis in heart and open perspectives for future therapeutic interventions to LMNA cardiomyopathy.

6.
Sci Signal ; 13(634)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487716

RESUMO

Endothelial dysfunction is a hallmark of tissue injury and is believed to initiate the development of vascular diseases. Sphingosine-1 phosphate receptor-1 (S1P1) plays fundamental physiological roles in endothelial function and lymphocyte homing. Currently available clinical molecules that target this receptor are desensitizing and are essentially S1P1 functional antagonists that cause lymphopenia. They are clinically beneficial in autoimmune diseases such as multiple sclerosis. In patients, several side effects of S1P1 desensitization have been attributed to endothelial damage, suggesting that drugs with the opposite effect, namely, the ability to activate S1P1, could help to restore endothelial homeostasis. We found and characterized a biased agonist of S1P1, SAR247799, which preferentially activated downstream G protein signaling to a greater extent than ß-arrestin and internalization signaling pathways. SAR247799 activated S1P1 on endothelium without causing receptor desensitization and potently activated protection pathways in human endothelial cells. In a pig model of coronary endothelial damage, SAR247799 improved the microvascular hyperemic response without reducing lymphocyte numbers. Similarly, in a rat model of renal ischemia/reperfusion injury, SAR247799 preserved renal structure and function at doses that did not induce S1P1-desensitizing effects, such as lymphopenia and lung vascular leakage. In contrast, a clinically used S1P1 functional antagonist, siponimod, conferred minimal renal protection and desensitized S1P1 These findings demonstrate that sustained S1P1 activation can occur pharmacologically without compromising the immune response, providing a new approach to treat diseases associated with endothelial dysfunction and vascular hyperpermeability.


Assuntos
Células Endoteliais/metabolismo , Nefropatias/tratamento farmacológico , Rim/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Receptores de Esfingosina-1-Fosfato/agonistas , Animais , Células CHO , Cricetulus , Modelos Animais de Doenças , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Linfócitos/metabolismo , Ratos , Traumatismo por Reperfusão/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Suínos
7.
Cardiovasc Res ; 116(2): 329-338, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31038167

RESUMO

AIMS: Despite improvements in patient identification and management, heart failure (HF) remains a major public health burden and an important clinical challenge. A variety of animal and human studies have provided evidence suggesting a central role of calcium/calmodulin-dependent protein kinase II (CaMKII) in the development of pathological cardiac remodelling and HF. Here, we describe a new potent, selective, and orally available CaMKII inhibitor. METHODS AND RESULTS: Chemical optimization led to the identification of RA306 as a selective CaMKII inhibitor. This compound was found potent on the cardiac CaMKII isoforms delta and gamma (IC50 in the 10 nM range), with pharmacokinetic properties allowing oral administration in animal models of HF. RA306 was administered to diseased mice carrying a mutation in alpha-actin that is responsible for dilated cardiomyopathy (DCM) in humans. In two separate studies, RA306 was orally administered at 30 mg/kg either for 2 weeks (twice a day) or for 2 months (once a day). Echocardiography monitoring showed that RA306 significantly improved cardiac function (ejection fraction and cardiac output) as compared to vehicle. These disease modifying effects of RA306 were associated with inhibition of cardiac phosphorylation of phospholamban (PLN) at threonine-17, indicating reduced cardiac CaMKII activity. CONCLUSION: This work supports the feasibility of identifying potent orally available CaMKII inhibitors suitable for clinical use to treat heart disease.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Cardiomiopatia Dilatada/tratamento farmacológico , Morfolinas/administração & dosagem , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Volume Sistólico/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Actinas/genética , Administração Oral , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomiopatia Dilatada/enzimologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Camundongos Transgênicos , Morfolinas/farmacocinética , Mutação , Miócitos Cardíacos/enzimologia , Fosforilação , Inibidores de Proteínas Quinases/farmacocinética , Ratos , Recuperação de Função Fisiológica
8.
ESC Heart Fail ; 7(5): 2871-2883, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32691522

RESUMO

AIMS: Excessive activation of Ca/calmodulin-dependent kinase II (CaMKII) is of critical importance in heart failure (HF) and atrial fibrillation. Unfortunately, lack of selectivity, specificity, and bioavailability have slowed down development of inhibitors for clinical use. We investigated a novel CaMKIIδ/CaMKIIÉ£-selective, ATP-competitive, orally available CaMKII inhibitor (RA608) on right atrial biopsies of 119 patients undergoing heart surgery. Furthermore, we evaluated its oral efficacy to prevent deterioration of HF in mice after transverse aortic constriction (TAC). METHODS AND RESULTS: In human atrial cardiomyocytes and trabeculae, respectively, RA608 significantly reduced sarcoplasmic reticulum Ca leak, reduced diastolic tension, and increased sarcoplasmic reticulum Ca content. Patch-clamp recordings confirmed the safety of RA608 in human cardiomyocytes. C57BL6/J mice were subjected to TAC, and left ventricular function was monitored by echocardiography. Two weeks after TAC, RA608 was administered by oral gavage for 7 days. Oral RA608 treatment prevented deterioration of ejection fraction. At 3 weeks after TAC, ejection fraction was 46.1 ± 3.7% (RA608) vs. 34.9 ± 2.6% (vehicle), n = 9 vs. n = 12, P < 0.05, ANOVA, which correlated with significantly less CaMKII autophosphorylation at threonine 287. Moreover, a single oral dose significantly reduced inducibility of atrial and ventricular arrhythmias in CaMKIIδ transgenic mice 4 h after administration. Atrial fibrillation was induced in 6/6 mice for vehicle vs. 1/7 for RA608, P < 0.05, 'n - 1' χ2 test. Ventricular tachycardia was induced in 6/7 for vehicle vs. 2/7 for RA608, P < 0.05, 'n - 1' χ2 test. CONCLUSIONS: RA608 is the first orally administrable CaMKII inhibitor with potent efficacy in human myocytes. Moreover, oral administration potently inhibits arrhythmogenesis and attenuates HF development in mice in vivo.


Assuntos
Calmodulina , Insuficiência Cardíaca , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Humanos , Camundongos , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA