Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35700230

RESUMO

Sublineages (SLs) within microbial species can differ widely in their ecology and pathogenicity, and their precise definition is important in basic research and for industrial or public health applications. Widely accepted strategies to define SLs are currently missing, which confuses communication in population biology and epidemiological surveillance. Here, we propose a broadly applicable genomic classification and nomenclature approach for bacterial strains, using the prominent public health threat Klebsiella pneumoniae as a model. Based on a 629-gene core genome multilocus sequence typing (cgMLST) scheme, we devised a dual barcoding system that combines multilevel single linkage (MLSL) clustering and life identification numbers (LINs). Phylogenetic and clustering analyses of >7,000 genome sequences captured population structure discontinuities, which were used to guide the definition of 10 infraspecific genetic dissimilarity thresholds. The widely used 7-gene multilocus sequence typing (MLST) nomenclature was mapped onto MLSL SLs (threshold: 190 allelic mismatches) and clonal group (threshold: 43) identifiers for backwards nomenclature compatibility. The taxonomy is publicly accessible through a community-curated platform (https://bigsdb.pasteur.fr/klebsiella), which also enables external users' genomic sequences identification. The proposed strain taxonomy combines two phylogenetically informative barcode systems that provide full stability (LIN codes) and nomenclatural continuity with previous nomenclature (MLSL). This species-specific dual barcoding strategy for the genomic taxonomy of microbial strains is broadly applicable and should contribute to unify global and cross-sector collaborative knowledge on the emergence and microevolution of bacterial pathogens.


Assuntos
Genoma Bacteriano , Klebsiella pneumoniae , Genômica , Genótipo , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus , Filogenia
2.
Vet Res ; 51(1): 60, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381115

RESUMO

Tenacibaculum maritimum is responsible for tenacibaculosis, a devastating marine fish disease. This filamentous bacterium displays a very broad host range and a worldwide geographical distribution. We analyzed and compared the genomes of 25 T. maritimum strains, including 22 newly draft-sequenced genomes from isolates selected based on available MLST data, geographical origin and host fish. The genome size (~3.356 Mb in average) of all strains is very similar. The core genome is composed of 2116 protein-coding genes accounting for ~75% of the genes in each genome. These conserved regions harbor a moderate level of nucleotide diversity (~0.0071 bp-1) whose analysis reveals an important contribution of recombination (r/m ≥ 7) in the evolutionary process of this cohesive species that appears subdivided into several subgroups. Association trends between these subgroups and specific geographical origin or ecological niche remains to be clarified. We also evaluated the potential of MALDI-TOF-MS to assess the variability between T. maritimum isolates. Using genome sequence data, several detected mass peaks were assigned to ribosomal proteins. Additionally, variations corresponding to single or multiple amino acid changes in several ribosomal proteins explaining the detected mass shifts were identified. By combining nine polymorphic biomarker ions, we identified combinations referred to as MALDI-Types (MTs). By investigating 131 bacterial isolates retrieved from a variety of isolation sources, we identified twenty MALDI-Types as well as four MALDI-Groups (MGs). We propose this MALDI-TOF-MS Multi Peak Shift Typing scheme as a cheap, fast and an accurate method for screening T. maritimum isolates for large-scale epidemiological surveys.


Assuntos
Variação Genética , Genoma Bacteriano , Tenacibaculum/genética , Técnicas de Tipagem Bacteriana/veterinária , Ensaios de Triagem em Larga Escala/veterinária , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/veterinária
3.
Transbound Emerg Dis ; 69(5): e2876-e2888, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35731505

RESUMO

Tenacibaculum maritimum is a devastating bacterial pathogen affecting a large variety of marine fish species. It is responsible for significant economic losses in aquaculture farms worldwide. Different typing methods have been proposed to analyse bacterial diversity and population structure. Serological heterogeneity has been observed and up to four different serotypes have been described so far. However, the underlying molecular factors remain unknown. By combining conventional serotyping and genome-wide association study, we identified the genomic loci likely involved in the O-antigen biosynthesis. This finding allowed the development of a robust multiplex PCR-based serotyping scheme able to detect subgroups within each serotype and therefore performs better than conventional serotyping. This scheme was successfully applied to a large number of isolates from worldwide origin and retrieved from a large variety of fish species. No obvious correlations were observed between the mPCR-based serotype and the host species or the geographic origin of the isolates. Strikingly, the distribution of mPCR-based serotypes does not follow the core genome phylogeny. Nevertheless, this simple and cost-effective mPCR-based serotyping method could be useful for different applications such as population structure analysis, disease surveillance, vaccine formulation and efficacy follow-up.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Tenacibaculum , Animais , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/epidemiologia , Peixes/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Estudo de Associação Genômica Ampla/veterinária , Genômica , Família Multigênica , Reação em Cadeia da Polimerase Multiplex/veterinária , Antígenos O/genética , Sorotipagem/métodos , Sorotipagem/veterinária , Tenacibaculum/genética
4.
Nat Commun ; 13(1): 3807, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778384

RESUMO

The genus Bordetella includes bacteria that are found in the environment and/or associated with humans and other animals. A few closely related species, including Bordetella pertussis, are human pathogens that cause diseases such as whooping cough. Here, we present a large database of Bordetella isolates and genomes and develop genotyping systems for the genus and for the B. pertussis clade. To generate the database, we merge previously existing databases from Oxford University and Institut Pasteur, import genomes from public repositories, and add 83 newly sequenced B. bronchiseptica genomes. The public database currently includes 2582 Bordetella isolates and their provenance data, and 2085 genomes ( https://bigsdb.pasteur.fr/bordetella/ ). We use core-genome multilocus sequence typing (cgMLST) to develop genotyping systems for the whole genus and for B. pertussis, as well as specific schemes to define antigenic, virulence and macrolide resistance profiles. Phylogenetic analyses allow us to redefine evolutionary relationships among known Bordetella species, and to propose potential new species. Our database provides an expandable resource for genotyping of environmental and clinical Bordetella isolates, thus facilitating evolutionary and epidemiological research on whooping cough and other Bordetella infections.


Assuntos
Coqueluche , Animais , Antibacterianos , Biodiversidade , Bordetella pertussis/genética , Farmacorresistência Bacteriana , Genômica , Humanos , Macrolídeos , Filogenia , Coqueluche/epidemiologia
5.
Res Microbiol ; 172(4-5): 103835, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34004273

RESUMO

Klebsiella pathogens affect human and animal health and are widely distributed in the environment. Among these, the Klebsiella pneumoniae species complex, which includes seven phylogroups, is an important cause of community and hospital infections. The Klebsiella oxytoca species complex also causes hospital infections and antibiotic-associated haemorrhagic colitis. The unsuitability of currently used clinical microbiology methods to distinguish species within each of these species complexes leads to high rates of misidentifications that are masking the true clinical significance and potential epidemiological specificities of individual species. We developed a web-based tool, Klebsiella MALDI TypeR, a platform-independent and user-friendly application that enables uploading MALDI-TOF mass spectrometry data in order to identify Klebsiella isolates at the species complex and phylogroup levels. The tool, available at https://maldityper.pasteur.fr/, leverages a database of previously identified biomarkers that are specific for species complexes, individual phylogroups, or related phylogroups. We obtained 84%-100% identification accuracy depending on phylogroup. Identification results are obtained in a few seconds from batches of uploaded spectral data. Klebsiella MALDI TypeR enables fast and reliable identification of Klebsiella strains that are often misidentified with standard microbiological methods. This web-based identification tool may be extended in the future to other human bacterial pathogens.


Assuntos
Klebsiella/classificação , Klebsiella/isolamento & purificação , Software , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Técnicas de Tipagem Bacteriana/métodos , Humanos , Klebsiella/química , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas
6.
Genome Biol Evol ; 10(2): 452-457, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29360975

RESUMO

The genus Tenacibaculum encompasses several species pathogenic for marine fish. Tenacibaculum dicentrarchi and "Tenacibaculum finnmarkense" (Quotation marks denote species that have not been validly named.) were retrieved from skin lesions of farmed fish such as European sea bass or Atlantic salmon. They cause a condition referred to as tenacibaculosis and severe outbreaks and important fish losses have been reported in Spanish, Norwegian, and Chilean marine farms. We report here the draft genomes of the T. dicentrarchi and "T. finnmarkense" type strains. These genomes were compared with draft genomes from field isolates retrieved from Chile and Norway and with previously published Tenacibaculum genomes. We used Average Nucleotide Identity and core genome-based phylogeny as a proxy index for species boundary delineation. This work highlights evolution of closely related fish-pathogenic species and suggests that homologous recombination likely contributes to genome evolution. It also corrects the species affiliation of strain AYD7486TD claimed by Grothusen et al. (2016).


Assuntos
Doenças dos Peixes/microbiologia , Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Tenacibaculum/genética , Animais , Genoma Bacteriano , Genômica , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA