Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(29): 7962-9, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27432963

RESUMO

Understanding how geography, oceanography, and climate have ultimately shaped marine biodiversity requires aligning the distributions of genetic diversity across multiple taxa. Here, we examine phylogeographic partitions in the sea against a backdrop of biogeographic provinces defined by taxonomy, endemism, and species composition. The taxonomic identities used to define biogeographic provinces are routinely accompanied by diagnostic genetic differences between sister species, indicating interspecific concordance between biogeography and phylogeography. In cases where individual species are distributed across two or more biogeographic provinces, shifts in genotype frequencies often align with biogeographic boundaries, providing intraspecific concordance between biogeography and phylogeography. Here, we provide examples of comparative phylogeography from (i) tropical seas that host the highest marine biodiversity, (ii) temperate seas with high productivity but volatile coastlines, (iii) migratory marine fauna, and (iv) plankton that are the most abundant eukaryotes on earth. Tropical and temperate zones both show impacts of glacial cycles, the former primarily through changing sea levels, and the latter through coastal habitat disruption. The general concordance between biogeography and phylogeography indicates that the population-level genetic divergences observed between provinces are a starting point for macroevolutionary divergences between species. However, isolation between provinces does not account for all marine biodiversity; the remainder arises through alternative pathways, such as ecological speciation and parapatric (semiisolated) divergences within provinces and biodiversity hotspots.


Assuntos
Filogeografia , Animais , Organismos Aquáticos/classificação , Oceanos e Mares
5.
Evolution ; 53(2): 326-335, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28565426

RESUMO

The majority of tropical marine families demonstrate their greatest concentration of species within the relatively small East Indies Triangle. In every direction, the species diversity decreases with distance from the East Indies. Other patterns suggest that the East Indies is where the average generic age is youngest, where some historical routes of dispersal originate, where the most apomorphic species occur, where genetic diversity is the greatest, and where extinctions are likely to originate. These coincident patterns provide support for the hypothesis that the East Indies has been operating as a center of evolutionary radiation. The driving force for this dynamic system is apparently the predominance of successful speciation involving relatively large populations with higher genetic diversity. This mechanism fits the centrifugal speciation model that was proposed more than 50 years ago.

7.
Science ; 296(5570): 1026-8; author reply 1026-8, 2002 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-12004904
9.
Evolution ; 20(3): 282-289, 1966 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28562977
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA